
Rapid Data Publishing – Infrastructure
Roy Duelfer, Montana DEQ

2015 Exchange Network National Meeting
Supporting the Business of Environmental Protection

September 29–October 1, 2015

Sheraton Philadelphia Society Hill Hotel
Philadelphia, Pennsylvania

http://www.exchangenetwork.net/en2015

ABSTRACT
How Montanta DEQ’s current infrastructure
supports a rapid development environment.

2

3

What problem does the API attempt to
solve?

The API provides 24/7 access to the Clean Water Information

Center, Hazardous Waste Handlers, Petroleum Release Fund

Claims and Reimbursements, and Unpermitted Releases

Datasets (stage 1). This means that anyone with internet

access can inspect the data at any time as long as the API is up

and running.

[1] (2014, Aug.) REST API Tutorial. [Online]. http://www.restapitutorial.com/lessons/httpmethods.html

How does the API provide access to data?

• Representational state transfer (REST) creates stateless

web services, thus exposing application data over the

Internet. [1]

• The API exposes the data in the various applications

through the HTTP protocol, making it a RESTful API.

http://www.restapitutorial.com/lessons/httpmethods.html

[2] Thomas Fielding, "Architectural Styles and the Design of Network-based Software Architectures," University of California, Irvine, Doctoral dissertation 2000.
[3] Geert Jansen. (2011) RESTful API Design. [Online]. http://restful-api-design.readthedocs.org/en/latest/intro.html 5

Why is the REST architecture used?
• REST is a simple API architecture that is universally accessible via

HTTP methods. Moreover, because the application data is not
subject to modification, REST is a lightweight implementation
that appeared to be the most appropriate choice. [2]

• Benefits of REST include:
• Uniform interface for accessing resources [3]
• Self-describing resources when designed properly [3]
• Easy readability (simple noun verb relationship between

resource and action) [3]

http://restful-api-design.readthedocs.org/en/latest/intro.html
http://restful-api-design.readthedocs.org/en/latest/intro.html
http://restful-api-design.readthedocs.org/en/latest/intro.html
http://restful-api-design.readthedocs.org/en/latest/intro.html
http://restful-api-design.readthedocs.org/en/latest/intro.html

[3] Geert Jansen. (2011) RESTful API Design. [Online]. http://restful-api-design.readthedocs.org/en/latest/intro.html 6

REST Overview
• The three main components for a RESTful API are the client, API, and application
• The client consumes the RESTful API data through the HTTP protocol [3]
• The API exposes application resources over the web using HTTP methods [3]
• The application is some dataset, usually a database which houses the data to be exposed [3]

http://restful-api-design.readthedocs.org/en/latest/intro.html
http://restful-api-design.readthedocs.org/en/latest/intro.html
http://restful-api-design.readthedocs.org/en/latest/intro.html
http://restful-api-design.readthedocs.org/en/latest/intro.html
http://restful-api-design.readthedocs.org/en/latest/intro.html

7

Project vision
• In order to provide for a well-informed public and increase the department’s transparency,

the data search tools API will expose program data sets in a concise and easy-to-use format.

• The API is designed to do three things (more like one thing with three parts),

1. Respond to properly formatted user requests for data with the correct dataset as fast as
possible.

2. Respond to properly formatted requests for documentation with a helpful, concise
response.

3. Respond to an improper request with a helpful error message indicating to the user what
resource could not be found.

8

Application Resources
• The API exposes resources as URL endpoints (also known as

Universal Resource Identifiers or URIs).

• These endpoints are known as routes within the API code;

however, the end user simply sees them as a URL representation of

a resource.

• The API listens for HTTP requests, if the request matches a route it

queries the database for the requested resource and returns it.

[1] (2014, Aug.) REST API Tutorial. [Online]. http://www.restapitutorial.com/lessons/httpmethods.html 9

High-level Interaction
1. To retrieve a resource a client first makes an HTTP request to the API. This would be done by making an

HTTP GET request for a specific resource like, www.example.com/cwaic/api/cycles.
2. Next, the API receives this request, identifies the requested resource and queries the database.
3. Finally, the API returns the results from the database to the client issuing a 200 HTTP success code. [1]

http://www.restapitutorial.com/lessons/httpmethods.html
http://www.example.com/cwaic/api/cycles

[8] JavaScript Guides Advanced. [Online]. http://javascript-reference.info/javascript-implementation-of-hashtable.htm 10

API Route Lookup
1. Using dictionary objects, the API code

performs a lookup populated from a
configuration database.

2. A request from a client comes in, the request:
/cwaic/api/cycles

3. The API parses the request and sets the app
variable = cwaic, and the resource variable to
cycles.

4. The API then looks up the app in the
configuration to see if it exists, if it does not it
returns saying the application could not be
found.

5. However, if the application does exist, the API
then searches the configuration for the
resource, when it finds a match it searches
within the sub object for the specific route
(the whole resource requested).

6. In this example: /cwaic/api/cycles, when the
API matches the route, it extracts the SQL
query from the configuration and carries on
with running the query and returning the
result.

• The benefit to this “levelled-lookup”
scheme, is the search running in O(log n) or
O(1) time, which is extremely efficient for a
data structure lookup. [8]

http://javascript-reference.info/javascript-implementation-of-hashtable.htm
http://javascript-reference.info/javascript-implementation-of-hashtable.htm
http://javascript-reference.info/javascript-implementation-of-hashtable.htm
http://javascript-reference.info/javascript-implementation-of-hashtable.htm
http://javascript-reference.info/javascript-implementation-of-hashtable.htm
http://javascript-reference.info/javascript-implementation-of-hashtable.htm
http://javascript-reference.info/javascript-implementation-of-hashtable.htm
http://javascript-reference.info/javascript-implementation-of-hashtable.htm
http://javascript-reference.info/javascript-implementation-of-hashtable.htm

11

Overall Structure

This structure allows us
to add new programs as
soon as the SQL is
written, allowing for
very fast development
turnaround times.
Using the internal
configuration tool,
routes are created in the
configuration database
and are immediately
present to the API and
applications.
Moreover, the internal
tool also contains the
metadata for the route
documentation.

12

Internal Configuration Tool

13

API Documentation

14

Documentation
• In addition to keeping the configuration separate from

code logic, another major benefit to this structure is
easy documentation.

• By removing sensitive fields such as the query, it is
possible to send a JSON route configuration response to
the client as documentation for the API itself.

15

Documentation Example
• If a client was to request

the CWAIC
documentation, he
could simply make the
request:
www.example.com/cwai
c/docs

• The response is a
filtered version of the
configuration for the
specific application. This
allows the end user to
see all of the routes
available to him with an
easy to read title that
describes the route and
resource.

• Response:
• {
• "cycles": {
• "/cycles": {
• "route": "/cycles",
• "title": "Cycles"
• }
• },
• "auids": {
• "/auids/cycle/:cycle": {
• "route": "/auids/cycle/:cycle",
• "title": "AUID's by cycle"
• },
• "/auids": {
• "route": "/auids",
• "title": "AUID's"
• }
• }
• }

http://www.example.com/cwaic/docs
http://www.example.com/cwaic/docs

16

Works Cited
[1] (2014, Aug.) REST API Tutorial. [Online]. http://www.restapitutorial.com/lessons/httpmethods.html

[2] Thomas Fielding, "Architectural Styles and the Design of Network-based Software Architectures," University of California, Irvine, Doctoral dissertation 2000.

[3] Geert Jansen. (2011) RESTful API Design. [Online]. http://restful-api-design.readthedocs.org/en/latest/intro.html

[4] Joyent. (2014) Node.js. [Online]. http://nodejs.org/

[5] Tomasz Janczuk. (2011, August) iisnode wiki. [Online]. https://github.com/tjanczuk/iisnode/wiki/iisnode-wiki

[6] Merrick Christensen. (2012, October) _iammerrick. [Online]. http://merrickchristensen.com/articles/javascript-dependency-injection.html

[7] Jakob Jenkov. tutorials.jenkov. [Online]. http://tutorials.jenkov.com/dependency-injection/dependency-injection-benefits.html

[8] JavaScript Guides Advanced. [Online]. http://javascript-reference.info/javascript-implementation-of-hashtable.htm

[9] TJ Holowaychuk. (2014) visionmedia. [Online]. http://visionmedia.github.io/mocha/

[10] Bocoup. Grunt.js. [Online]. http://gruntjs.com/

[11] M Shiek Uduman Ali. (2011, September) codeproject. [Online]. http://www.codeproject.com/Articles/255568/WCAT-Simple-Performance-Test-Tool-for-your-NET-web

[12] express - request. express. [Online]. http://expressjs.com/4x/api.html#req.params

[13] express - response. express. [Online]. http://expressjs.com/4x/api.html#res.status

[14] Don Nguyen, Jump Start Node.js, 1st ed.: SitePoint, 2012.

http://www.restapitutorial.com/lessons/httpmethods.html
http://restful-api-design.readthedocs.org/en/latest/intro.html
http://nodejs.org/
https://github.com/tjanczuk/iisnode/wiki/iisnode-wiki
http://merrickchristensen.com/articles/javascript-dependency-injection.html
http://tutorials.jenkov.com/dependency-injection/dependency-injection-benefits.html
http://javascript-reference.info/javascript-implementation-of-hashtable.htm
http://visionmedia.github.io/mocha/
http://gruntjs.com/
http://www.codeproject.com/Articles/255568/WCAT-Simple-Performance-Test-Tool-for-your-NET-web
http://expressjs.com/4x/api.htmlreq.params
http://expressjs.com/4x/api.htmlres.status

	Slide Number 1
	Slide Number 2
	What problem does the API attempt to solve?
	How does the API provide access to data?
	Why is the REST architecture used?
	REST Overview
	Project vision
	Application Resources
	High-level Interaction
	API Route Lookup
	Slide Number 11
	Slide Number 12
	API Documentation
	Documentation
	Documentation Example
	Works Cited

