

Network Exchange
Protocol Version 2.0

June 2, 2008

Abstract

The Network Exchange Protocol version 2.0 defines the set
of rules intended to govern the generation and use of valid
service requests and responses on the Environmental
Information Exchange Network (Exchange Network). This
Protocol document is intended for use by node implementers
to embed data content standards (defined in Schemas) in
service requests and responses. The protocol described in
this document can also be used to confirm or establish the
validity of network service requests and responses.

 i

Revision History

Change Record

Version
Number Description of Change Change

Effective Date
Change

Entered By
2.0 June 2, 2008 Dr. Yunhao

Zhang

 ii

• Table of Contents

1 Introduction and Terminology .. 1

1.1 Introduction ... 1
1.2 Terminology .. 1

2 Background .. 3
2.1 Principles, Assumptions and Constraints .. 3

2.1.1 Principles ... 3
2.1.2 Assumptions .. 3

2.2 Requirements .. 4
2.3 Out of Scope.. 4

3 Network Web Services Architecture... 5
3.1 A Basic Web Services Architecture .. 5
3.2 Extending the Basic Web Services Architecture for the Network 6

3.2.1 Additional Components of the Network.. 6
3.2.2 Setup of the Network ... 7
3.2.3 Operation of the Network ... 8

3.3 Network Registries and Repositories ... 9
3.4 Network Web Services Protocol Stack ... 9

3.4.1 Security.. 10
3.4.2 Transport ... 10
3.4.3 XML Messaging ... 10
3.4.4 Service Description.. 10
3.4.5 Service Discovery .. 10

3.5 Web Services Standards .. 10
3.5.1 Secure Socket Layer (SSL) ... 10
3.5.2 Hypertext Transfer Protocol (HTTP) .. 11
3.5.3 Simple Object Access Protocol (SOAP)... 11
3.5.4 Extensible Markup Language (XML).. 11
3.5.5 Web Services Description Language (WSDL) ... 11
3.5.6 Universal Description, Discovery, and Integration (UDDI) 12

4 Network Message Structure .. 13

 iii

4.1 HTTP Transport Protocol ... 13
4.2 SOAP Messaging .. 13

4.2.1 SOAP Envelope... 14
4.2.2 SOAP Header .. 15

4.2.2.1 MustUnderstand Attribute .. 15

4.2.3 SOAP Body.. 15
4.2.3.1 Encoding ... 15

4.2.4 SOAP Fault.. 15
4.2.4.1 SOAP Fault Codes .. 15

4.2.4.2 SOAP Fault Detail Codes ... 16

4.3 XML Payloads.. 17
4.3.1 Payload Location ... 17
4.3.2 Payload Validation ... 17
4.3.3 Payload Compression.. 18
4.3.4 SOAP Message Compression ... 18

5 Network Services ... 19
5.1 Conversation Structure .. 19
5.2 Basic Network Service Interactions .. 19

5.2.1 Authenticate... 20
5.2.2 Submit.. 20
5.2.3 GetStatus... 21
5.2.4 Query ... 24
5.2.5 Solicit ... 24
5.2.6 Execute.. 24
5.2.7 Notify.. 25

5.2.7.1 Document Notification.. 26

5.2.7.2 Event Notification... 26

5.2.7.3 Status Notification .. 27

5.2.8 Download... 27
5.2.9 NodePing ... 28
5.2.10 GetServices ... 28

5.3 Network Exchange Business Processes .. 28

 iv

5.3.1 Simple Document Submission ... 29
5.3.2 Notified Document Download .. 31
5.3.3 Sending Network Events.. 34
5.3.4 Broadcasting Network Events.. 35
5.3.5 Retrieving Information using Query ... 36
5.3.6 Executing predefined Procedures.. 38
5.3.7 Performing Asynchronous Operations ... 39

5.3.7.1 Network Configuration ... 39

5.3.7.2 Procedures of Asynchronous Exchanges .. 39

5.3.8 Using Network Authentication and Authorization Services (NAAS) 41
5.3.8.1 Network Authentication.. 42

5.3.8.2 Network Authorization ... 43

6 Extended Business Exchange Scenarios .. 45
6.1 Large Payload Exchanges.. 45
6.2 Automated Data Retrieval .. 45
6.3 Point-to-Point Exchanges .. 46
6.4 Data Flow with Notification and Delivery .. 47
6.5 Ad Hoc Data Flows ... 48
6.6 Supporting Small Devices.. 48
6.7 Using External Web Services... 49

7 Describing Network Services.. 51
8 Publishing and Discovering Network Services through UDDI 52

8.1 UDDI Data Model ... 52
8.2 Publishing Rules... 52
8.3 Inquiry Functions.. 53
8.4 Publishing Functions ... 54
8.5 UDDI Errors ... 54

9 Interacting with Network Registries & Repositories ... 56
9.1 Accessing Service Information in UDDI.. 56
9.2 Dynamic Invocation of Web Services ... 57
9.3 Using UDDI for Broadcasting... 58

10 Security ... 60

 v

10.1 Applicable Security Protocols ... 60
10.1.1 HTTP Security ... 60
10.1.2 SSL.. 60
10.1.3 PKI... 61

10.2 Security Levels.. 61
10.2.1 Public Access .. 61
10.2.2 SSL with Client Authentication... 61
10.2.3 SSL with Dual-authentication... 61
10.2.4 Digital Signature .. 61

10.3 Authentication and Authorization ... 62
10.4 Central and Federated Authentications .. 63
10.5 Message Confidentiality ... 65
10.6 Message Integrity and Non-repudiation.. 65

11 References .. 68

 vi

Table of Figures

Figure 1 – Basic Components of the Network Web Services Architecture 6

Figure 2 – Setup of the Network.. 8

Figure 3 – Operation of the Network ... 9

Figure 4 – Network Protocol Message Structure... 13

Figure 5 – Network SOAP Message Structure .. 14

Figure 6 – Network Exchange Conversation Structure.. 19

Figure 7 – State Transition Diagram for Document Submissions.................................. 24

Figure 8 – Bi-directional Flow Diagram with Submit and Download 28

Figure 9 – UML Activity Diagram for Simple Submissions .. 30

Figure 10 – UML Sequence Diagram for Document Submissions 31

Figure 11 – UML Activity Diagram for Solicited Operations... 32

Figure 12 – UML Sequence Diagram for Download Operations 34

Figure 13 – UML Activity Diagram for Event Notifications. .. 35

Figure 14 – UML Activity Diagram for Event Broadcasting.. 36

Figure 15 – UML Activity Diagram for Simple SQL Queries .. 37

Figure 16 – UML Sequence Diagram for Query Operations.. 38

Figure 17 – UML Sequence Diagram for the Execute Operation 39

Figure 18 – UML Sequence Diagram.. 40

Figure 19 – UML Sequence Diagram for Requester and Provider 41

 1

1 Introduction and Terminology

1.1 Introduction
The Network Exchange Protocol Version 2.0 (V2.0) is a lightweight Protocol for the
exchange of structured data, unstructured data, and relational data among network
nodes across a wide area of networks. The Protocol defines a framework where data
exchanges can take place independent of hardware/software platforms, development
tools, and programming languages used.

1.2 Terminology

Term Definition/Clarification
CSM Central Security Management

DBMS Database Management System

DIME Direct Internet Message Encapsulation

EPA Environmental Protection Agency
Exchange
Network

Environmental Information Exchange Network

FCD Flow Configuration Document
HTTP Hypertext Transfer Protocol
MTOM Message Transmission Optimization Mechanism
NAAS Network Authentication and Authorization Services. This is a set of

centralized security services shared by all network nodes.
QA Quality Assurance

RBAC Role-Based Access Control

RPC Remote Procedure Call

Requester A node that initiates SOAP request messages.

SAML Security Assertion Markup Language

Service
Provider

A node that accepts SOAP messages and executes methods defined by
this Protocol.

SMTP Simple Mail Transport Protocol

SOAP Simple Object Access Protocol
SQL Structured Query Language
SSL Secure Sockets Layer
SSO Single Sign-on

 2

Term Definition/Clarification

Target
Node

The ultimate destination of a dataflow, a target node may or may not
implement the Network Exchange Protocol V2.0.

tModel tModel, or Technical Model, is used in UDDI to represent unique concepts
or constructs. They provide a structure that allows re-use and, thus,
standardization within a software framework. Interfaces defined by the
Network Exchange V1.0 and V2.0 Protocol will be registered as tModels
in a private UDDI registry.

NTG Network Technology Group.

UDDI Universal Description, Discovery and Integration.

UML Unified Modeling Language is the industry-standard language for
specifying, visualizing, constructing, and documenting the artifacts of
software systems.

User Node A node that uses Network Exchange Protocol V2.0, but does not provide
services; also known as pure client.

W3C World Wide Web Consortium.
WSDL Web Service Definition Language.
XML

Schema
XML Schemas express shared vocabularies and allow machines to carry
out rules made by people. They provide a means for defining the
structure, content and semantics of XML documents. A Schema is also a
type of DET.

 3

2 Background

2.1 Principles, Assumptions and Constraints
Principles are rules or maxims that guide subsequent decisions. They consist of a list of
criteria involving business direction and good practice to help guide the architecture and
design.
Assumptions are givens or expectations that form a basis for decisions, and if proven
false may have a major impact on the project. They identify key characteristics of the
future that are assumptions for the architecture and design, but are not constraints.
Constraints are restrictions that limit options. They are typically things that must or must
not be done in designing an application. They identify key characteristics of the future
that are accepted as constraints to architecture and design.
The principles, assumptions, and constraints for the Network Exchange Protocol V2.0
are as follows:

2.1.1 Principles
1. The Network Exchange Protocol V2.0 should be kept as simple as possible, even if

doing so means it will be unable to meet a small number of identified, but
advanced needs.

2. The Network Exchange Protocol V2.0 should formalize the Network use cases and
provide detailed information about interfacing with nodes. The Protocol will be
used by both network flow designers and network users and should address the
needs of these two (2) primary groups of users.

3. The Network Exchange Protocol V2.0 should address how to design the requests
and responses (i.e., the web services) that network flows should support. Note
that the design of the requests and responses will always be driven first and
foremost by the immediate needs of those building the flow. However, flow
designers should provide end users with the maximum flexibility for data use by
keeping the services simple and generic. Designers are encouraged to not focus
solely on services that support machine to machine flows between existing
systems, but to supplement and extend these with simple services that could be
used to support more interactive uses.

2.1.2 Assumptions
1. The Network Exchange Protocol V2.0 will rely on existing standards (e.g., SOAP,

WSDL and UDDI).
2. Network Node V1.1 and Network Node V2.0 are not compatible from the protocol

level due to incompatibility between SOAP V1.1 and SOAP V1.2.
3. The Protocol will be used by both network flow designers and network users.

 4

2.2 Requirements
These requirements describe the technical and functional capabilities that will be
delivered as part of the Network Exchange Protocol V2.0. The Network Exchange
Protocol V2.0 shall:
1. Support all critical requirements for network flows including the ability to support

processing instructions/transaction type information, such as:
− The ability to initiate appropriate network security (See Section 10, Security).
− The ability to handle different network uses (See Section 5.3, Network

Exchange Business Processes).
2. Use HTTP/HTTPS, WSDL, and SOAP, and be as consistent as possible in their

application with emerging industry standards.
3. Able to be implemented using the most common middleware configurations in

use by node implementers, without a high degree of customization.
4. Be both human and machine readable.
5. Character support identification. All network transactions will be governed by

UTF – 8.
6. Support the following message exchange functions:

a. Synchronous and Asynchronous communication.
b. Acknowledgement.
c. Time stamping.

2.3 Out of Scope
The Network Exchange Protocol V2.0 does not govern the following functionality:

• Defining and handling the common types of missing, unavailable, or inapplicable
data. This is an important function but falls outside the scope of the Network
Exchange Protocol V2.0.

• Specification of the format of the message payloads.

• Internationalization. There will not be international language support. The
standard is English.

 5

3 Network Web Services Architecture
The Network Exchange Protocol V2.0 will be used within the larger context of the
network Web services architecture. A software system’s architecture defines the overall
structure of the system. It partitions the system into components, allocates
responsibilities among those components, and defines both how the components
collaborate and how control flows through the system.

3.1 A Basic Web Services Architecture
Service Provider – This is the provider of the web service. The service provider
implements the service, publishes its availability, makes it available on the Internet, and
processes requests for services.
Service Requester – This is any consumer of the web service. The service requester
discovers an existing web service, retrieves its description, and then utilizes the web
service by opening a network connection and sending an Extensible Markup Language
(XML) request conforming to its interface description.
Service Registry – This is a logically centralized directory of web services. The service
registry provides a central place where service providers can publish new web services
and service requesters can find existing ones.
The basic components of any web services architecture and the typical order of
operations of basic web services are depicted in Figure 1. The arrows in the diagram
flow from the initiating component and show the direction of the request as detailed
below:
1. The service provider develops their service and publishes its availability in the

service registry using Universal Description Discharge and Integration (UDDI). The
provider also publishes data service descriptions through the GetServices method
defined in the Node Functional Specification V2.0.

2. Using UDDI, the service requester accesses the service registry to find the service
with which they want to work, retrieve a pointer to a description of the service
(typically a detailed technical specification of how to interact with the service), and
then they retrieve the actual address of the service.

3. The service requester retrieves the service description Web Service Definition
Language (WSDL) using the pointer it obtained from the service registry. The
service description is located in a separate repository.

4. The service requester then formulates its service request using the detailed
specification of the service description, and sends the request to the service at the
address also retrieved from the UDDI registry.

 6

Service
Registry

Service
Provider

Service
Requestor

1.
Publish
Service

2.
Discover
Service 3.

Retrieve
Service

Description

4.
Invoke
Service

Figure 1 – Basic Components of the Network Web Services Architecture

3.2 Extending the Basic Web Services Architecture for the Network
The basic web services architecture described above will be extended to implement the
network. This will require additional components and result in a more complex flow of
operations.
The components and the flow of operations of the network web services architecture is
best depicted in the two separate diagrams below. Figure 2 depicts the configuration of
the network, while Figure 3 depicts the operation of the network once it is set up.

3.2.1 Additional Components of the Network
The additional components of the network web services architecture depicted in the
figures are as follows:
XML Schema Registry – This is a logically centralized directory of XML Schemas. The
XML Schemas describe the various payloads (data files) that may be exchanged across
the network. The XML Schema Registry provides a central place where the exchange
network partners can publish data standards.
Flow Configuration Document (FCD) Registry – This is a logically centralized
directory of Flow Configuration Documents. The FCD defines the business rules and
parameters that will be in effect between a given service requester and service provider.
The FCD registry provides a central place where network participants can publish new
FCDs. FCDs have traditionally been paper documents signed by the parties to the
agreement. However, they can also exist in executable form supplying needed
information to help automate business transactions that occur within the scope of the
agreement.
Service Description Repository – This is a logically centralized storage location for
the Service Descriptions, also called WSDL files. The service description repository
provides a central place where the parties to a trading partner agreement can store new
service descriptions for subsequent retrieval.

 7

Exchange Network Discovery Services (ENDS) – The ENDS is a supplementary
service to UDDI for detailed descriptions about data service requests, parameter
definitions and other Exchange Network specific information.
Network Authentication and Authorization Services (NAAS) – NAAS provide
centralized security services for the Exchange Network. These services include user
authentication, authorization, identity management and policy management.

3.2.2 Setup of the Network
Setup of the network will be an ongoing process as new services are added, and older
services are updated or retired. The setup of the network web services architecture as
depicted in Figure 2 is as follows:
1. The Network Technology Group (NTG), which is responsible for administering

the XML schema definitions for each exchange payload that moves across the
network, defines an official version of the XML schema definition and stores it in
the XML schema repository.

2. The NTG then publishes the official version of the XML schema definition in the
XML schema registry.

3. The service provider develops their service, creates a service description using
the WSDL, and stores the service description in the service description
repository.

4. The service provider then stores the availability of their web service in the service
registries (UDDI and ENDS).

A
pp

ro
va

l

 8

 Figure 2 – Setup of the Network

3.2.3 Operation of the Network
The typical operational order of the network web services architecture (depicted in
Figure 3) is as follows:
1. Using UDDI, the service requester accesses the service registry (See Reference

15 – UDDI Version 3.0) to find the service with which they want to work, then
retrieves a pointer to a description of the service as well as the actual address of
the service.

2. The service requester retrieves the service description (WSDL, See Reference
16) from the service repository using the pointer it obtained from the service
registry.

3. The service requester retrieves additional data service information from ENDS or
using the GetServices method.

4. The service requester authenticates against the node or the Network
Authentication and Authorization Services (NAAS) to obtain a security token.

5. The service requester formulates its service request using the detailed
specification of the service description and the business rules from the FCD.
This service request is sent to the service at the address retrieved from the
service registry.

6. The service provider validates the security token then verifies access control
policies against the request.

7. The service provider validates the request message, processes the request, and
then returns the response to the requester.

 9

Service Requester

Network Registries

Network
Node

Network
Authentication
Authorization

Services

1.Discovery
2. Authenticate

4. Validate (Token)
Publish

Figure 3 – Operation of the Network

3.3 Network Registries and Repositories
The network registries and repositories may be housed in the same physical location
and use the same general access services. However, each of these registries and
repositories must be treated as logically separate entities.
In addition, any or all of the three possible Network Registries, as well as the service
registry, may utilize a “Registrar” service (not pictured in Figure 2). The registrar
provides UDDI registration services on behalf of a customer (e.g. a web service
provider). It is responsible for handling additions of entries to the registry as well as
updates or deletions of registered entries in the registry. A registrar can be totally
automated or it can be a website that provides a human interface to the customer and
then employs the API for accessing the registry.

3.4 Network Web Services Protocol Stack
The Exchange Network Protocol can be visualized as a stack of several layers of
capability with various standards applicable to each layer:

Discovery UDDI, ENDS

Description WSDL, Node Service
Descriptions

XML Messaging SOAP, XML

Transport HTTP/HTTPS

Security SSL/TLS, WS-
Security, NAAS, XML

 10

Firewalls

Each layer is independent from the layers above and below it. Each has its own job that
provides greater flexibility allowing the connection of all forms of disparate systems and
network technologies to support distributed processing over the Internet.
3.4.1 Security
This layer insulates the application from unwanted intrusion and unauthorized access.
It can employ a number of different security protocols. However, the approach that
must be supported by the network at this time is Secure Sockets Layer (SSL) plus
service level user authentication and authorization.).
3.4.2 Transport
This layer is responsible for transporting messages between applications. It can also
employ a number of different Protocols. All Exchange Network nodes must support the
Hypertext Transfer Protocol HTTP/HTTPS V1.1.
3.4.3 XML Messaging
This layer is responsible for encoding messages in a common XML format so that the
messages can be understood at either end. The approaches that must be supported by
the network at this time are:

a) Simple Object Access Protocol (SOAP) V1.2 for the encoding of the message
structure.

b) XML Schema for the encoding of the message payload.
3.4.4 Service Description
This layer is responsible for describing the interface to a specific web service. The
approach that must be supported by the network at this time is WSDL / 1.1(WSDL, See
Reference 16). The Exchange Network defines additional constructs for describing
lower level services such as data services published through the Query or Solicit
method, or other web services accessible through the Execute method.
3.4.5 Service Discovery
This layer is responsible for centralizing services into a common registry.. The current
approach for providing this functionality is UDDI (UDDI, See Reference 15). The
Exchange Network Discovery Services provides supplemental descriptions of fine
grained data services and other callable services through the Query and Execute
methods.

3.5 Web Services Standards
At each layer of the web services protocol stack there are one or more applicable
standards that must be understood and addressed.
3.5.1 Secure Socket Layer (SSL)
SSL is a Protocol originally designed to encrypt messages sent across the Internet
using HTTP. SSL ensures that no one can easily intercept the messages and read

 11

them, thus providing a significant degree of privacy in Internet communications. SSL is
a separate layer that sits below HTTP and above TCP and IP. HTTP over SSL has a
default port of 443, as opposed to HTTP’s default port of 80. This means that many
applications will have two (2) default ports: 80 and 443.
All network nodes must support SSL 3.0 and TLS 1.0 for all node operations.
3.5.2 Hypertext Transfer Protocol (HTTP)
Hypertext Transfer Protocol (HTTP) was designed make communications between
computers easy by specifying a set of rules of conversation. It requires the presence of
applications which follow different rules in the conversation and act as either clients or
servers. Clients always initiate the contact and start the conversation, while servers can
only respond to requests from clients. The client makes a request and the server
responds in a stateless transaction.
3.5.3 Simple Object Access Protocol (SOAP)
The Network Node v2.0 must be implemented using SOAP 1.2, and the encoding style
is changed from the SOAP/RPC encoding in the previous version to the document/literal
encoding in the current version. SOAP 1.2 is a messaging framework for transferring
information in XML Infoset format from the sender to the ultimate receiver. Although
SOAP 1.2 allows one-way messaging and supports other transport bindings, the main
focus of the Exchange Network is on request/response exchanges over HTTP/HTTPS.

3.5.4 Extensible Markup Language (XML)
Using XML a user can create a tag-based markup language for the representation of
information about almost any topic possible. The structure and content of the markup
language is typically at a more detailed level through an XML Schema (itself specified
through XML). An instance of information in the markup language encoded/marked-up
according to one of these specifications is called an XML document, which contains
tags identifying the content by a series of elements and attributes associated with the
content in the order and format specified. The formal specifications can be used to
automatically validate an XML document using a validating XML parser.
There are two versions of XML specifications: XML 1.0, which was first issued in 1998
and has undergone several revisions, and XML 1.1 (Second Edition) which was
published by W3C as a recommendation on August 16, 2006. All SOAP messages
must be in XML 1.0 format. However, XML payload carried by the Exchange Network
may either be in XML 1.0 or 1.1. The XML version should be defined in the Flow
Configuration Document (FCD) by the Integrated Project Team (IPT).

3.5.5 Web Services Description Language (WSDL)
The Web Service Description Language (see Reference 16) is an XML-based language
specification defining how to describe a web service in computer readable form. For a
given web service, its WSDL file describes four (4) key pieces of data:

 12

1. Operation – information describing all available functions/methods.
2. Data type – information for all message requests and message responses.
3. Binding – information about the transport protocol to be used.
4. Address – information for locating the specified service.
WSDL represents the contract between the service requester and the service provider.
Using WSDL, a client can locate a web service and invoke any of its available functions.
With WSDL aware tools, you can automate this process.
There are two versions of WSDL specifications: WSDL 1.1 and WSDL 2.0. Although
just a W3C Note, WSDL 1.1 has been widely implemented in various toolkits. The
original Network Node Specification 2.0 will be described in WSDL 1.1. A WSDL 2.0
description of the node services will also be made available in the future.
3.5.6 Universal Description, Discovery, and Integration (UDDI)
UDDI (UDDI, see reference 15) is a technical specification that provides a programmatic
way for people to find and use certain web services. UDDI is a critical part of web
services Protocol stack. It enables organizations to both publish and discover web
services.
EPA has established a UDDI v3.0 server as a shared resource for the Exchange
Network. It currently hosts most of the version 1.1 node information and WSDL files, but
will be expanded to support version 2.0 nodes as well.

 13

4 Network Message Structure
All network messages will utilize the basic HTTP request/response structure. Within
this basic transport layer structure, all messages will be encoded using the SOAP
envelope/header/body structure, in which header is optional. Inside the body of the
SOAP message, the payload will be encoded using XML (XML Schema). The payload
will typically be a simple request, a document response or an error response (called a
fault), and the response will be an answer to the request. This basic structure is
depicted in Figure 4.

Transport Protocol (HTTP)

XML Messaging (SOAP)

Payload (XML Schema)

Figure 4 – Network Protocol Message Structure

The three primary components of the message structure that need to be discussed are
the transport protocol (HTTP); the XML messaging Protocol (SOAP); and the payload
encoded according to an XML schema. Because SOAP is being used over HTTP, it
imposes some constraints on what must or must not be included in the HTTP message
structure. Also, because XML payloads are being used in the SOAP messages, the
XML is imposing certain constraints on the SOAP message structure.

4.1 HTTP Transport Protocol
Currently, the only supported transport mechanism approved as part of the Network
Exchange Protocol V2.0 is HTTP/HTTPS.
HTTP is a two-message system of communication. There is a request HTTP structure
and a response HTTP structure. All network messages will utilize the basic HTTP
request/response structure. SOAP requests are sent via an HTTP request and SOAP
responses are returned within the content of an HTTP response.
SSL (Secure Socket Layer) support is mandatory in all node version 2.0
implementations. All service requests and responses must be sent through SSL v3.0 or
TLS (Transport Layer Security) in the production environment.

4.2 SOAP Messaging
All network transactions must be SOAP messages. SOAP is bound to HTTP, as the
Network Exchange Protocol V2.0 does not currently support SOAP binding to other
transport mechanisms. All nodes must support SOAP V1.2 as defined by the W3C.
SOAP messages are composed of a mandatory envelope element, an optional header

 14

element, a mandatory body element and an optional fault element. All network
payloads are carried in the body of the SOAP message or as an attachment to the
envelope. This basic structure is depicted in Figure 5.

SOAP Envelope
(required)

SOAP Header
(optional)

SOAP Body
(required)

SOAP Fault
(optional)

Figure 5 – Network SOAP Message Structure

The Network Exchange Protocol V2.0 does not govern payload issues. However, it is
expected that the SOAP XML message structure for all SOAP messages will be
validated with the network SOAP schema located in the network registry.

4.2.1 SOAP Envelope
The envelope element is the root element of the SOAP message. The rest of the
SOAP message must be contained within the envelope start and end tags. The
envelope element must be prefixed with an indicator of the namespace that defines the
SOAP version that is applicable. The version is indicated by the namespace attribute,
xmlns, included in the envelope element start tag. The namespace prefix could be any
valid XML namespace string, but the convention usually adopted is as follows:

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=” http://www.w3.org/2003/05/soap-envelope”>

The namespace name SOAP-ENV is really a symbol for
http://www.w3.org/2003/05/soap-envelope. Although it can be any NCName (an XML
Name, minus the ":"), the URL section must be exactly as specified. A different URL
represents a different version of SOAP, and must cause the VersionMismatch fault (see
Section 4.2.4 for definition).

 15

4.2.2 SOAP Header
The Header element is used to provide a mechanism for extending a SOAP message.
SOAP header processing must be processed; however, defining messages inside the
Header is beyond the scope of this document.

4.2.2.1 MustUnderstand Attribute
All Network Nodes must process the MustUnderstand attribute in the SOAP header. A
Fault should be given if MustUnderstand is “true” and the node doesn’t support the
message.

4.2.3 SOAP Body
The Body element is used to provide information about the message.

4.2.3.1 Encoding
All version 2.0 nodes must use document/literal encoding for request and response
messages. This literal encoding style allows arbitrary XML elements to be sent in a
SOAP message. It has been a common practice to set the encoding style attribute to
empty in such a situation.
SOAP messages of literal encoding are often governed by XML schema rather than
encoding styles.

4.2.4 SOAP Fault

4.2.4.1 SOAP Fault Codes
The SOAP V1.2 Protocol defines four fault codes that must be used in all SOAP fault
messages. They are referenced in Table 4.

Table 4 – SOAP Fault Code

Fault Code Meaning

VersionMismatch The SOAP envelope namespace is wrong

MustUnderstand A header with mustUnderstand set to 1 could not be
processed (understood) by the receiver

DataEncodingUnknown The request message contains an encodingStyle that is not
supported by the receiver

Sender Request message is invalid or could not be processed

Receiver A fault caused by a receiver-side error

 16

4.2.4.2 SOAP Fault Detail Codes
All SOAP fault messages must confirm to the SOAP V1.2 specification and use the
predefined SOAP fault codes. In addition, all SOAP fault messages must contain a fault
detail element, with Exchange Network specific error codes and error descriptions,
when processing of a SOAP request fails.
Common error codes for the Network Exchange Protocol V2.0 are listed in Table 5.

Table 5 – Network Exchange Error Code

Error Code Description
E_UnknownUser The user could not be found.
E_InvalidCredential The user credential is invalid.
E_TransactionId A transaction ID could not be found.
E_UnknownMethod The requested method is not supported.
E_ServiceUnavailable The requested data service or web service is

undefined.
E_AccessDenied The operation could not be performed due to lack of

privilege.
E_InvalidToken The security token is invalid.
E_TokenExpired The security token has expired.
E_FileNotFound The requested file could not be located.
E_ValidationFailed XML schema or schematron validation error.
E_ServerBusy The service is too busy to handle the request at this

time, please try later.
E_RowIdOutofRange The RowId parameter is out of range.
E_FeatureUnsupported The requested feature is not supported.
E_VersionMismatch The request is a different version of the protocol.
E_InvalidFileName The name element in the nodeDocument structure is

invalid.
E_InvalidFileType The type element in the nodeDocument structure is

invalid or not supported.
E_InvalidDataFlow The dataflow element in a request message is not

supported.
E_InvalidParameter One of the input parameters is invalid.
E_AuthMethod The authentication method is not supported.
E_Unknown An unknown or undefined error has occurred.
E_QueryReturnSetTooBig The result set specified is too large to return.
E_DBMSError The database returned an error.

 17

Error Code Description
E_RecipientNotSupported The recipient functionality is not supported
E_NotificationURINotSupported The NotificationURI functionality is not supported.

The message below shows the structure of a SOAP fault message with the fault detail
element:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="
http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <Code>SOAP-ENV:Sender</Code>
 <Reason>Invalid User</Reason>
 <Detail>
 <NodeFaultDetail
xmlns="http://www.exchangenetwork.net/schema/node/2">
 <ErrorCode>
 E_UnknownUser</ ErrorCode >
 <Description>
 Authentication failed; please check your userId and password.
 </Description>
 </NodeFaultDetail></Detail>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

This fault detail element indicates that the fault is due to an invalid authentication token,
a fault that is specific to this Protocol. The fault detail element must be a qualified
element, governed by the namespace URL:
http://www.exchangenetwork.net/schema/node/2.

4.3 XML Payloads

4.3.1 Payload Location
All network transactions must be SOAP messages. Specific payloads that are being
transferred between trading partners will either be enclosed within the body of the
SOAP message or sent as MTOM attachments.

4.3.2 Payload Validation
The Network Exchange Protocol V2.0 does not govern payload issues. However, it is
expected that all XML payloads will be validated using the XML schema. The Exchange
Network provides a central quality assurance services, another set of web services, for
validating XML instance documents using either XML schema or Schematron.

 18

4.3.3 Payload Compression
Due to the verboseness of the XML document, it is highly recommended that payload
exchanged over the network be compressed using ZIP algorithm. All network nodes
MUST support compressed documents.

4.3.4 SOAP Message Compression
SOAP message compression can be handled on the HTTP level using the gzip content
encoding. When sending a request, a node client MAY choose to compress the entire
message and indicate the message is compressed in the HTTP header as shown
below:
POST / HTTP/1.1
Host: www.exchangenetwork.net
User-Agent: SQLData Web Client 3.6
Accept: text/xml,application/xml,application/xhtml+xml

Content-Encoding: gzip

Accept-Encoding: gzip, deflate
Keep-Alive: 300
Connection: keep-alive
The Content-Encoding header informs the receiver the message body is compressed
using gzip. In addition, it has an Accept-Encoding header which indicates that the client
is willing to accept a gzip compressed response. Most of the common HTTP/SOAP
servers support gzip compression at this time. However, a node SHOULD compress the
response message only if the request header contains Accept-Encoding with
gzip,deflate. This is due to the fact that HTTP capability of node client software is largely
unknown or undefined.

 19

5 Network Services
A Protocol defines the structure of an interaction that will take place among two or more
parties. It defines the rules that must be followed by each of the parties in order for
them to successfully fulfill their role in the interaction.
The Network Exchange Protocol V2.0 will involve a series of interactions or
conversations among the various network trading partners and business components.
These conversations will generally consist of service requesters (i.e. other nodes or
simple clients) requesting services of service providers (nodes). The service requests
will primarily involve requests for information from a web service, which will then
typically respond with the requested information or a fault message of some type. All
service requests will utilize the message structure defined above. All requests and
responses will be encoded using SOAP 1.2.
However, the conversations between network parties can be much more complex than
simple request/response, with different parties initiating the conversation or taking up
requests and responses at different points in the process to accomplish different
objectives.

5.1 Conversation Structure
The conversations moving across the network will be composed as depicted in Figure 6.
All messages will be built on a basic set of operational primitives. These primitives will
be used to construct the basic exchange service interactions. These service
interactions will then be strung together to implement entire business processes
associated with the exchange of environmental data. For example, the process of one
state collecting weekly water monitoring results from a neighboring state’s node is an
Exchange Business Process, as would be EPA collection of monthly activity reports for
a delegated program.

Exchange Business Processes

Basic Service Interactions

Operational Primitives

Figure 6 – Network Exchange Conversation Structure

Note that the Protocol and Specification focus on the two lower layers of this
conversation.

5.2 Basic Network Service Interactions
The Exchange Network is a services oriented architecture. As the name implies, the
network is made up of basic services that interact to fulfill business exchanges. This
protocol uses the term “Basic Network Service Interactions” to describe how the sets of

 20

messages, configured in one of the four ways described above, get something done.
These service interactions are the heart of the Exchange Network Protocol and the
operation of the network itself. These service interactions are described below: (Note:
this section does not cover message structures and functional details of the service
interactions, see Network Node Functional Specification.)
The following are the network exchange service operations:
• Authenticate
• Submit
• GetStatus
• Query
• Solicit
• Notify
• Download
• NodePing
• GetServices
• Execute

5.2.1 Authenticate
Authenticate is the first method a client calls in order to gain access to the network
exchange service. Users must supply identification and a credential; the service
provider returns, upon a successful authentication, a ticket, known as the
securityToken. The securityToken is required for all subsequent network service
interactions. The topic of using securityToken for access control is further discussed in
the Security section. Authenticate is a request/response message configuration.

5.2.2 Submit
The Submit method allows a client to send documents (of various formats) to the
network service (typically a partner node). The document in the request message is
formally defined, using XML schema, as:
 <complexType name="NodeDocumentType">
 <sequence>
 <element name="DocumentName" type="xsd:string"/>
 <element name="DocumentType" type="typens:DocumentType"/>
 <element name="DocumentContent" type="typens:AttachmentType"/>
 </sequence>
 <attribute name="DocumentId" type='xsd:ID' use='optional' />
 </complexType>

As can be seen in the schema segment, each document has a name, a type (XML file,
Flat text, etc), and contents.

 21

The request message, as noted previously, must contain a securityToken issued by the
node or an authentication server. It must also include a predefined dataflow identifier.
The request message is defined in the Node 2.0 WSDL segment as follows:

 <element name="Submit">
 <complexType>
 <sequence>
 <element name="securityToken" type="xsd:string"/>
 <element name="transactionId" type="xsd:string"/>
 <element name="dataflow" type="xsd:NCName"/>
 <element name="flowOperation" type="xsd:string" />
 <element name="recipient" type="xsd:string" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="notificationURI" type="typens:NotificationURIType"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="documents" type="typens:NodeDocumentType"
minOccurs="1" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>

The documents element in the request message is an array of NodeDocumentType.
Once a preliminary process is completed successfully, the service provider returns a
transaction ID, which can be used to track the status of the submission.
The whole transaction fails if any one of the documents could not be processed
successfully. The service provider should return a SOAP fault detail indicating the
name of the failed document, but the message should be interpreted as the failure of
the whole submission.

5.2.3 GetStatus
This method is used to query the status of a previous transaction. The requester sends
the message along with a transaction ID obtained from a network node.
The Exchange Protocol 2.0 list of status responses is:
• Received: A submission was received by the service but has not been processed.
• Pending: One or more documents are to be downloaded by the service.
• Processing: The transaction is currently under processing.
• Approved: The document has been approved by the system administrator. This

applies to dataflow that needs approval.
• Processed: The submission has been processed by the node, but waiting to be

delivered to its ultimate destination (i.e. a partner system or another node).
• Completed: The submission is complete and accepted by the target node.
• Canceled: The transaction is canceled by the node administrator or an approver.
• Failed: The submission has failed. The requester should resubmit.

 22

This list may be expanded as needed.
A dataflow may have program-specific statuses understandable by submitters. The
following diagram shows a general state transition of status for a typical document
submission:

 23

Pending

Recieved

Processed

FailedCompleted

Approved

Is submission
Successful?

Are documents Valid?

Submission Approved?

Document Delivered
Successfully?

 24

Figure 7 – State Transition Diagram for Document Submissions

5.2.4 Query
The method provides a capability to query data on a partner node and receive back
XML encoded data. It has the following parameters:
 <element name="Query">
 <complexType>
 <sequence>
 <element name='securityToken' type='xsd:string'/>
 <element name='dataflow' type='xsd:string' />
 <element name='request' type='xsd:string' />
 <element name='rowId' type='xsd:integer'/>
 <element name='maxRows' type='xsd:integer'/>
 <element name='parameter' type='typens:ParameterType'
minOccurs='0' maxOccurs='unbounded'/>
 </sequence>
 </complexType>
 </element>

 <element name="QueryResponse" type='typens:ResultSetType'/>

• securityToken (required): An authentication token previously returned by the

Authenticate method.
• dataflow: The dataflow identifier for the data request.
• request (required): The database logic to be processed it contains the name of a

service request or a stored procedure.
• parameters (optional): An array of parameter values.
• rowId: The starting row for the result set, it is a zero based index to the current

result set.
• maxRow: The maximum number of rows to be returned.
The service provider returns a result set, bound by a schema associated with data,
when successful.

5.2.5 Solicit
The Solicit method is designed for facilitating asynchronous Query operations. When a
Query request takes long time to execute, the method allows a requester to trigger the
operation and to download the result later when ready.
Asynchronous operation using the Solicit method is further discussed in Section 5.3.7.

5.2.6 Execute
The method provides the capability to extend the node functionality. It can also serve as
a proxy to other internal or external web services. The request message is defined as:
 <element name="Execute">
 <complexType>

 25

 <sequence>
 <element name="securityToken" type="xsd:string"/>
 <element name="interfaceName" type="xsd:string"/>
 <element name="methodName" type="xsd:string" />
 <element name="parameters" type="typens:ParameterType"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>

• securityToken: An authentication token previously returned by the Authenticate

method.
• interfaceName: The name of the bind-able interface. It normally map to the WSDL

file where the method is defined.
• methodName: The name of the web method.
• parameters: An array of parameter values for the request.
When invoking external web services, the node is acting like a web service proxy
behind the scene. There are two ways to bind a web service: static binding and dynamic
binding. In static binding, the node generates code given a WSDL file, and compiles the
generated code into the node implementation. In dynamic binding, however, the node
generates messages using definitions in the WSDL file without generating any code.
While static binding is supported in all programming environments, implementers are
encouraged to create generic web proxies with dynamic binding.
The Execute method could run in either synchronous or asynchronous mode. The
response message is defined as:

 <element name="ExecuteResponse">
 <complexType>
 <sequence>
 <element name='transactionId' type='xsd:string' />
 <element name='status' type='typens:TransactionStatusCode' />
 <element name="results" type='typens:GenericXmlType'/>
 </sequence>
 </complexType>
 </element>

If the status in the response is ‘Pending’, then the request is processed asynchronously.
The transactionID can be used to retrieve final results.

5.2.7 Notify
This method has three intended uses:
1. Document Notification: Notify of changes, or availability, of a set of documents to

a network node.

 26

2. Event Notification: Send network events to peer nodes. The semantics of
network events are application specific.

3. Status Report: Notify the processing status of a previous service interaction to a
requester.

5.2.7.1 Document Notification
The Notify method is different from Submit in that there are no document contents or
attachments in the request message. The message simply informs a network node that
some documents are ready to be retrieved; the service provider can, at its own
convenience, download them at any time.
The format of the message is defined by the following WSDL segment:
 <element name="Notify">
 <complexType>
 <sequence>
 <element name="securityToken" type="xsd:string"/>
 <element name="nodeAddress" type="xsd:string"/>
 <element name="dataflow" type="xsd:NCName"/>
 <element name="messages" type="typens:NotificationMessageType"
minOccurs="1" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 </element>

For document notification, ‘messages.messageCategory’ element should be set to
‘Document’.
In addition to a transaction ID, which is returned immediately, the service provider is
required to send an acknowledgement to the requester through email or a client
provided callback method when the documents are downloaded, be it successful or not.
It is highly recommended that service providers use a quality control strategy to detect
transmission errors early, and retry multiple times when necessary. Nodes are required
to provide detailed transaction logs that contain all transaction records, either
succeeded or failed. It is also recommended that activity logs be provided so that
problem tracking and debugging are possible.
Partners may also use Notify to alert internal nodes (i.e. destination systems) that a
document has been successfully received, scanned, and archived and is ready for
loading. EPA’s CDX is considering this approach to alert its program system customers
that documents are ready for loading.

5.2.7.2 Event Notification
The Notify method can also be used for sending event notifications. The following
message indicates that

 <typens:messages ObjectId="_307c5169-80b1-4231-a3ae-9dc6ed70d4f1">

 27

 <typens:messageCategory>Event</typens: messageCategory >
 <typens:messageName>NodeStatus</typens:messageName>
 <typens:status>Down</typens:status>
 <typens:statusDetail>The REF Node is down between 2008-03-12 17:30:00
to 2008-03-12 18:00:00 for system for maintanence.</typens:statusDetail>

 </typens:messages>

Note that the messageCategory is ‘Event’ in this case, which indicates that the event
occurred at a node named REF.

5.2.7.3 Status Notification
A service provider may notify a requester of process status, i.e., file submission status,
using the same notification message. A notification is a status notification if the
messageCategory is ‘Status’. The ObjectId attribute should be the transaction ID for
which the status is associated with.
Status notification is a complement of the GetStatus operation in that submission (or
operation) status information can flow both ways. In some situations when documents
have to go through a lengthy process, an impatient submitter may call GetStatus many
times with no expected result. With status notification, however, the submitter is notified
when the status of the submission changes. Active status notification can, in many
situations, reduce network traffic and improve the quality of services.

5.2.8 Download
This method allows user to retrieve documents from a node. After being notified of the
availability of a set of documents (through either the Notify method or other means) or
per a pre-established schedule, the service provider needs to download and process
the updated files.
Note that pulling can, depending on the nature of dataflow, be on demand or scheduled.
Download operation can take place without prior notification in some exchange
scenarios where document location and availability are predefined.
The Download method is a complement of Submit in that it facilitates bi-directional
dataflows between nodes. In other words, a network node can be a sender at one time,
but a receiver at another. With Download and Submit, the Exchange Network
becomes symmetrical from the dataflow point of view. The following dataflow diagram
shows a symmetrical network with three participating nodes. The Download data flows
inbound from the requester point of view; the Submit data flows outbound.

 28

Figure 8 – Bi-directional Flow Diagram with Submit and Download

5.2.9 NodePing
The NodePing method is designed for checking the availability of a network node. A
network node is not available if:

• A connection to the node cannot be established. The NodePing method on the
client side would generally produce a network exception. There will be no
response from the method call.

• The response message is a SOAP fault, with a status code 500 for HTTP
transport. This indicates that, although the server is up and running, it is not
ready for network exchange services at this time.

5.2.10 GetServices
The GetServices method provides a means for nodes to describe its functionalities and
publishing new services. From the consumer point of view, it is a discovery function for
examining the capability of a node. Due to the dispersed nature of the network, a node
may elect to support additional services, such as data services or web services callable
using Query or Execute. The GetServices method allows a node to publish any type
of service meta-information governed by an XML schema. However, a node must
support the GetServices schema defined separately.

5.3 Network Exchange Business Processes
Partners will establish Network Exchange Business Processes by combining network
service interactions (e.g. Authenticate and then Download). The following scenarios
outlines typical ways services can be combined. They document who requests what of
whom, and what kind of responses can be expected.

 29

Example Scenario Example Usage

Simple Document Submission A state node transmits monthly report to EPA CDX.

Requested Download A State node notifies EPA/CDX of the availability of a
monthly report for download.

Sending Network Events A node notifies a trading partner that it is going down.

Broadcasting Network Events A node notifies multiple trading partners that it is going
down.

Retrieving Information using
Query

A client application queries a node for “drill down”
information on one monitoring location.

Executing external web
services

A client application retrieves census data from a proxy
node.

Performing Asynchronous
Operations

One partner routinely requests a large or complex
query from a partner node, which the partner services
as resources permit.

Note in the scenario examples described below, the process of token validation is
omitted for brevity. While all flows with EPA use the Network Authentication and
Authorization Service (NAAS) for token validation, network partners can use the NAAS
for other flows and/or may establish their own local security servers.

5.3.1 Simple Document Submission
In a simple document submission operation, a client wants to send an array of
documents (i.e., one or more) for a specific dataflow to a network node. The procedure
is outlined below:
1. The client sends an Authenticate message, with user ID and credential, to the

node; the service provider returns a securityToken after successful authentication.
2. The client invokes the Submit method with a set of documents. If successful, the

service provider returns a transaction ID for status tracking.
3. Optional. The client queries submission status using GetStatus, and resubmits if

failed.
The whole process is represented in the following Unified Modeling Language (UML)
activity diagram (Figure 9):

 30

Authenticate

Submit

GetStatus

/ Accepted

/ Failed
/ Fault

/ Fault

Stop
Figure 9 – UML Activity Diagram for Simple Submissions

The diagram indicates that the client can resubmit the document if the submission failed
during flow specific processing.
Note that if the client invokes the GetStatus method at a time when the securityToken
has expired, it must call the Authenticate method again to obtain a valid securityToken.
Although a node would typically process the document in asynchronous mode, it could
also elect to do it immediately, and return the status in the response message of
Submit. A client should check the transaction status in the response and determine the
proper next step.
Figure 10 shows a UML sequence diagram for simple document submissions. The
requester and the service provider are in synchronized operation mode using the
request/response exchange model.

 31

Requester
«implementation class»

Provider

1: Authenticate(userId:String, credential:String, autheticationMethod:String)

2: securityToken()

3: Submit(securityToken:String, transactionId:String, dataflow:String, documents:nodeDocument)

4: TransactionId()

5: GetStatus(securityToken:String, transactionId:Single)

6: TransactionStatus()

Figure 10 – UML Sequence Diagram for Document Submissions

5.3.2 Notified Document Download
This exchange scenario is more suitable for automated information exchanges. Two
partners could establish an agreement for sharing document when available. One node,
the source, notifies another node, the receiver, of the availability of some documents.
The receiver can then download the specified document as requested.
Such operations help the service provider to avoid peak conditions. Documents can be
transferred at a preferred time when traffic is relatively light. The notified download
operation also eliminates the need of the receiver from checking the document
availability.
A typical notify-download operation is presented in Figure 11. One interesting
phenomena in the operation is that, after a successful notification, the requester and the
provider run in parallel. The provider may be in the process of downloading the
documents while the requester is checking the status of the transaction. The shaded
boxes in the diagram represent processes on the service provider side.

 32

Authenticate

Notify

GetStatus

/ Failed

/ Accepted

/ Fault

/ Fault

Download / Fault

A transition fork -
Client and server run in parallel

A transition join -
Download and GetStatus
must both be successful.

Figure 11 – UML Activity Diagram for Solicited Operations.

The sequence of Download operation is further illustrated in Figure 12. The process is
outlined below:
1. Node A sends an Authenticate message to Node B.
2. Node B returns a securityToken if authentication is successful.

 33

3. Node A invokes the Notify method and informs Node B about availability of a set
of documents.

4. Node B acknowledges the notification and returns a transaction ID for status
tracking.

5. Sometime later, perhaps when Node B has idle time, it initiates a download
operation by authenticating itself with Node A.

6. Node A returns a securityToken, granting access to Node B.
7. Node B sends a Download message to Node A, asking for the documents.
8. Node A embeds or attaches the documents in the response message, and sends

it.
9. To verify transaction status, Node A may call the GetStatus method to check the

status of the submission.
10. Node B delivers the status string in the response message.

 34

Requester «implementation class»
Provider

1: Authenticate(userId:String, credential:String, autheticationMethod:String)

2: securityToken()

4: NotifyResponse(TransId:String)

9: GetStatus(securityToken:String, transactionId:Single)

10: GetStatusResponse(StatusString:String)

3: Notify(securityToken:String, nodeAddress:String, dataflow:Single, documents:nodeDocument)

7: Download(securityToken:string(idl), transactionId:string(idl), documents:<unspecified>)

5: Authenticate(userId:String, credential:String, authMethod:String)

8: DownloadResponse(stream:string(idl), documents:<unspecified>)

6: securityToken()

Some time later...

Some time later...

Figure 12 – UML Sequence Diagram for Download Operations

5.3.3 Sending Network Events
Sending a network event is different from other operations in that the sender does not
care about receiving a response, i.e., it is typically a one-way operation. If the
underlying transport is HTTP/HTTPS, however, the receiver must send a response for it
to be successful. This is because HTTP is a request-response protocol in which lack of

 35

a response is treated as a network error. Nevertheless, the receiver can safely discard
the response message, as it carries no semantic meaning.
A network event is modeled using the Notify message (See the Functional Specification
for details). If the ‘messageCategory’ argument in the message is ‘Event’ then the
message is an event. The message structure inside the message shows the type and
description of the event.

Authenticate

Notify

/ Accepted

/ Fault

/ Fault

Stop
Figure 13 – UML Activity Diagram for Event Notifications.

5.3.4 Broadcasting Network Events
A broadcast operation is an operation that sends an event to one or more nodes, either
sequentially or concurrently. For a broadcaster to send such an event, it must know
who is interested in the event and where to send the message (listeners.) The Network
Exchange Protocol does not specify how this should be accomplished.
The following section describes how Broadcast is envisioned to work once a network
UDDI registry is established. This discussion is not a normative part of the Protocol. In
the network node configuration, an event is registered as a tModel (a technical
fingerprint) in the UDDI registry. Nodes that are willing to be notified will then create a
service that supports the tModel, which is the equivalent of saying:

• Let me know when the event happens, and call me at this
endpoint.

So when the broadcaster searches for web services that support the tModel in the UDDI
registry, it gets a complete list of all listeners. Since the broadcaster knows the exact
format of the Notify message, it is a simple matter to send the same message to
everyone in the list. The whole process is shown in Figure 14.

 36

Figure 14 – UML Activity Diagram for Event Broadcasting.

5.3.5 Retrieving Information using Query
The Node Functional Specification defines a simple method, Query, for all data service
requests. In a typical operation, a service provider would create named reports, or
predefined information requests on the database server. The client sends a Query
request message, including associated parameters, indicating which data service
request or procedure to execute. A response with selected records is returned.
Given the generic database query capability, it is entirely possible to move relational
data from one node to another. For instance, Node A may query daily updated records
on Node B and insert, after mapping to its own data elements, the updated records into
another table. The operations can all be conducted automatically, either by schedule or
by a triggering event.
Figure 15 is a simple activity diagram for the Query operation. The diagram assumes
that the requester knows what statements or procedures the provider supports. Given
the discussion above, this may not be true in all situations due to the dynamic nature of
web services. A node may suspend support for certain queries at one time, or add
more queries at another. The Network Node Functional Specification defines a method,
GetServices, for querying currently available data requests at a node. When invoked
with Query as a parameter, the method returns a complete list of all requests available
at that time.

 37

Authenticate

Query
/ Fault

/ Fault

Stop
Figure 15 – UML Activity Diagram for Simple SQL Queries

Figure 16 shows a sequence diagram for the Query operation. The requester, in this
case, asks the provider for a list of available queries. The requester node then sends a
Query message using one of the queries from the list, and gets a result set back.
The requester should use paging capability (if supported) of the node by specifying the
proper values of rowId and MaxRows parameters. For an interactive client, the
maximum number of records should be about 2-3 screens of data. Using paging or
chunking could improve the response time and system performance. It is also the
mechanism for large amount of data exchanges.

 38

Requester «implementation class»
Provider

Authenticate(userId:String, credential:String, autheticationMethod:String)

securityToken()

Query(securityToken:String, request:String, rowId:Integer, maxRows:Integer, parameters:ArrayOfString)

QueryReponse(ResultSets:Object)

GetServices(securityToken:String, servideType:String)

GetServicesResponse()

A list of available predefined information requests

Figure 16 – UML Sequence Diagram for Query Operations

5.3.6 Executing predefined Procedures
The Execute method is designed for accessing additional web services offered by a
node or external service providers.
The procedure for executing an executable web service is outlined below:
1. The client sends an Authenticate message to log on to the network.
2. The client invokes the Execute method, passing all data to the service provider.
3. The service provider processes the requested procedure and returns a status of

the execution.
The procedure is shown in the following sequence diagram (Figure 17):

 39

Requester «implementation class»
Provider

Authenticate(userId:String, credential:String, autheticationMethod:String)

securityToken()

Execute(securityToken:String, request:String, parameters:ArrayOfString)

ExecuteResponse()

Figure 17 – UML Sequence Diagram for the Execute Operation

5.3.7 Performing Asynchronous Operations
This section discusses some of the basic configurations and scenarios for
asynchronous operation using the Solicit method.

5.3.7.1 Network Configuration
Asynchronous data exchanges can take place in different ways based on the network
configuration:
1. Pure Client: In this scenario, a requester (a client application) wants to conduct

an asynchronous operation with a network node. Because the client can’t
receive unrequested messages, it is the client’s responsibility to check the status
of the transaction and download the document when available. The sequence of
operations in this case is Solicit-GetStatus-Download.

2. Network Node: This is the case where one node, say Node A, (or a requester at
the node) asks another node, Node B, to perform an asynchronous operation.
After the operation is completed, Node B submits the result set to Node A. The
sequence of operations in this case is Solicit-Submit. Since Node B is in the
best position to know when the operation is done, it can send the result to the
target node as soon as possible.

5.3.7.2 Procedures of Asynchronous Exchanges

5.3.7.2.1 Pure Client Interactions
Figure 18, UML sequence diagram shows a typical exchange under such situations:

 40

Requester «implementation class»
Network Node

Solicit(securityToken:String, returnURL:String, request:String, parameters:ArrayOfString)

TransactionId()

Download(securityToken:String, transactionId:String, dataflow:String, documents:nodeDocument)

DownloadResponse(stream:string(idl), documents:<unspecified>)

GetStatus(securityToken:String, transactionId:Single)

GetStatusResponse(StatusString:String)

Check if the result is available

Figure 18 – UML Sequence Diagram

The procedure is outlined as follows:
1. The requester sends a Solicit message to the provider, specifying the stored

procedure to be executed and its parameters. The return URL parameter is set
to empty because there is no node implementation at the requester side.

2. The provider marks the transaction as pending and returns a transaction ID
immediately.

3. The provider processes the transaction some time later, and set the status of the
transaction to either Completed or Failed based on the final result.

4. Meanwhile, the requester may occasionally check the status of the transaction by
invoking the GetStatus method.

5. The requester downloads the document when the transaction is completed
successfully. It may retry the whole procedure if failed.

5.3.7.2.2 Network Node Interactions

 41

In this configuration, Node A is not only a service provider, but also a requester, which
allows it to deliver results to the target address. The UML sequence diagram is shown in
Figure 19.

Requester «implementation class»
Node A

Solicit(securityToken:String, returnURL:String, request:String, parameters:ArrayOfString)

TransactionId

«implementation class»
Node B

3: Submit(securityToken:String, transactionId:String, dataflow:String, documents:nodeDocument)

4: transactionId

Figure 19 – UML Sequence Diagram for Requester and Provider

The procedure is outlined as follows:
1. The requester sends a Solicit message to node A, specifying the stored

procedure to be executed, its parameters and the return URL - Node B (the
delivery address).

2. Node A marks the transaction as pending and returns a transaction ID
immediately.

3. Node A processes the query some time later.
4. If successful, node A submits the result to node B as requested. It sets the

status of the transaction to either Completed or Failed based on the status of the
final submission.

5.3.8 Using Network Authentication and Authorization Services (NAAS)
NAAS is a set of centralized security services. Security tokens and assertions issued by
NAAS are trusted and accepted by all network nodes. In order to jump-start the
Network, EPA agreed to host the initial version of the NAAS. This allowed Network
partners the opportunity to implement the Protocol as the next generation of security
technologies and services were established and validated.

 42

NAAS provides a set of standard web services across the Network, which can be easily
accessed by Network users and services providers. All operations defined in NAAS
must be conducted over a secure SSL channel using 128-bit encryption.

5.3.8.1 Network Authentication

5.3.8.1.1 Direct Authentication
Under direct authentication, the requester sends an Authenticate message to the
NAAS and obtains a security token. Steps of direct authentication are outlined as
follows:
1. The client sends an Authenticate message to NAAS, and obtains a security

token when successful.
2. The client then sends a request to a network node (Node A, for instance) along

with the security token.
3. Node A sends the security token to NAAS for validation and authorization.
4. The NAAS service verifies the security token. It returns a SOAP Fault message

when validation fails and a positive response when validation succeeds.
5. Node A performs the operation only when the NAAS response is positive.

5.3.8.1.2 Delegated Authentication
In this application scenario, the requester sends an authentication message to a
network node. The node then delegates the authentication request to the NAAS for
processing.
This model simplifies client interactions with a network node because the client can
perform all tasks at a single entry point (with a single WSDL file, perhaps). However, a
small performance impact is expected because the overhead of routing the message to
NAAS.
The following UML sequence diagram (Figure 20) shows interactions between the
requester, the network node and the NAAS.

 43

Requester «implementation class»
Network Node

«metaclass»
Central Auth Service

Authenticate(userId:String, credential:String, autheticationMethod:String)

authToken()

AnyOperation

AnyOperationResponse()

Validate(securityToken:String, clientHost:String, resourceURI:String)

Authentication(userId:String, credential:String, authenticationMethod:String)

securityToken()

CentralAuth(uid:String, cred:String, authMethod:String, clientHost:String)

securityToken()

ValidateResponse()

AnyOperation()

AnyOperationResponse()

Validate(securityToken:String, clientHost:String, resourceURI:String)

ValidateResponse()

Direct Authentication

Delegated Authentication

Figure 20 - Using the Network Authentication and Authorization Service

5.3.8.2 Network Authorization
Authorization is a process of granting access to resources to a user based on a certain
access control policy. Given the authenticated user identity (the subject) and the
security policy of a network resource (the object), the central authorization server would
determine whether or not to grant access. The authorization service answers the
following question:

Is operation X by principal Y on resource Z permitted?
NAAS performs the entitlement checking operations using a web method – Validate.
The request message of the method is defined as follows:

<element name="Validate">

 44

 <complexType>
 <sequence>
 <element name='userId' type='xsd:string'/>
 <element name='credential' type='typens:PasswordType'/>
 <element name='domain' type='typens:DomainTypeCode'/>
 <element name='securityToken' type='xsd:string'/>
 <element name='clientIp' type='xsd:string'/>
 <element name='resourceURI' type='xsd:string'/>
 </sequence>
 </complexType>
 </element>

The service returns an OK message when the subject is authorized, a SOAP fault
message otherwise.
Additional details of use of the NAAS for authorization can be found in the NAAS
Security Specification.

 45

6 Extended Business Exchange Scenarios

Network Node Functional Specification V2.0 allows more complex and advanced
exchange patterns that were not available in the previous versions. This section
discusses the exchange scenarios that could expand the scope of V2.0 services to
meet much wider application requirements.

6.1 Large Payload Exchanges
In certain applications, a network node A may need to exchange large amount of data
with another node (node B). Sending such data as a single payload could either exceed
network capability or go beyond the resource limitation on the servers.
The paging (positioned fetching) feature in the Query method could be used to reliably
stream data in small packets from one node to another in an extended period of time.
For this to happen, the source node of the data would provide a service request which
supports paging using rowId and maxRows. The data exchange is outlined as follows:

1. The destination node B initiates a request to node A using the predefined
services request. The maxRows parameter is set to a moderate value, and the
rowId is initialized to 0.

2. Node A executes the service request and returns a result set if successful. It may
return less than the requested number of rows based on configuration, but
should not exceed the number.

3. Node B processes the result set and loads it into the database. It then checks the
lastSet flag, it adds the rowCount to the rowId parameter and goes back to step 1
to repeat the process until the lastSet flag is true.

Depending on how long it takes to transfer all records, there might be records changed
during the data exchange. This can be dealt by re-synchronizing the datasets if
necessary. The issue can be eliminated by performing the operation during weekend or
after business hours, or using the Solicit method to collect the entire result set.

6.2 Automated Data Retrieval
In the data submission process using Submit, it typically involves a user manually
logging in to a node and delivering the data online. The entire process can be
automated if the source of the data and the destination are both network nodes.
The two parties may establish an agreement in which the destination node, such as
CDX, is responsible for collecting the data proactively on a scheduled basis. The data
exchange process is outlined below:

1. The data collector node triggers the process by invoking the Solicit method on
the source node where the data resides. The requestor provides the collector’s

 46

node address in the ‘recipients’ parameter, indicating where the results should be
delivered.

2. The source node responds with a transaction ID which will be recorded by the
requestor with a status ‘Pending’.

3. The source node runs the requests asynchronously and constructs the XML
instance document. If successful, it submits the document to the specified
recipient address; otherwise, it notifies the recipient the transaction was not
successful with a status code and the reason of the failure.

4. The data collector node receives the XML document and processes it as needed.
To improve reliability, the data collector may retry failed attempts several times before
declaring operation failure.
Note that for the entire process to be successful the data collector must be authorized
by the source node to perform the Solicit operation; and the source node must be
authorized by the data collector to do data submissions. The access control policies can
be established on NAAS.

6.3 Point-to-Point Exchanges
In the previous versions of network exchange protocol, information exchanges typically
occur between a user (consumer) and a machine (service provider). The new version
expands the exchange scope to point to point, or user to user.
The point-to-point exchange is made possible through the recipient parameter in the
Submit method, which imposes a delivery mandate to the service provider for sending
the document to intended receiver. The recipient could be another node, a user, or even
a service provider outside of the Exchange Network.
The user-to-user data exchange scenario can be roughly outlined as follows:

1. A user (sender) submits a document to a node, indicating the destination by
specifying the recipient email address.

2. The node returns a transaction ID to the sender and marks the transaction as
pending.

3. The node processes the document as needed, such as validating and
transforming the document. It then sends an email message, with transaction ID
and other necessary information, to the receiver, notifying the availability of the
document.

4. The recipient authenticates against the node and invokes the Download method
to retrieve the document.

5. The node checks the validity of the receiver’s credential and performs necessary
access control. It sends the document to the recipient and marks the transaction
as ‘Complete’.

6. The node sends a notification email to the sender, informing the final delivery of
the document.

 47

One of the important features in such exchanges is that the document is exchanged
through a very secure channel. The document is encrypted over SSL and both the
sender and receiver are authenticated by the network security services.
To further tighten access control over such exchanges, the node should give a special
dataflow identifier, and then use NAAS access control policies to regulate who can send
and who can receive.

6.4 Data Flow with Notification and Delivery
This exchange pattern is very similar to the point-to-point exchange except that the
exchange is conducted machine to machine.
There are three nodes that are involved in the data exchanges:

• Source Node: This is the node that owns the data to be exchanged. In
order to conduct automated exchanges, it may have a timer or scheduler
that triggers the process.

• Proxy Node: This is the broker or delegator between the source node and
target node. It typically has a more complex business process (dataflow
process). From the source node point of view, it is the only way to reach
the target node.

• Target Node: This is the receiver node. It typically sits behind firewalls and
does not respond to other requests except from the Proxy Node. This node
may be responsible for loading information into a database system.

This is the network configuration that is very common in the state to federal government
data exchanges. In many regulated environmental information exchanges, the Source
Node is a state node, the Proxy Node is the CDX and the Target Node is the backend
node for a program office.
The data exchange is through the Submit method and it is described below:

1. A timer or scheduler triggers an automatic submission process. The source node
constructs an XML instance document for a configured dataflow, and then
submits to the proxy node. The ‘recipient’ parameter is the address of the target
node and the ‘notificationURI’ contains the source node address for receiving
status notification.

2. The proxy node receives the document and returns a transaction ID and current
status to the source node. The source node creates a transaction associated with
the submission using the transaction ID.

3. The proxy node processes the transaction according to business requirements,
and delivers the document to the target node through a special security
arrangement. The transaction ID is provided to the target for transaction
management and tracking.

 48

4. The target node processes the data and sends a report to the proxy, indicating
the status of the transaction, and any error messages if the transaction failed.

5. The proxy node invokes the Notify method with the transaction status, and
detailed description of error should the transaction fail.

Note that user authentication is omitted for clarity here. All nodes are required to be
authenticated using their own credential. It is recommended that Secure Authentication
Keys (SAK) be used, which ties credentials to an account ID and an IP address.

6.5 Ad Hoc Data Flows
Unlike regular dataflows which have a steady stream of data and lasts for long period of
time, ad hoc dataflows deal with situations where there are sudden requirements for
data exchanges in a relative short period of time. This is especially useful in certain
emergency situations.
Ad Hoc dataflows lasts for only a specific period of time and will typically abandoned
afterwards. The only way to deal with such exchanges is through configuration, not
dataflow design and development due to time constraints. The Node 2.0 specification
provides a mechanism where such exchanges can happen.
In this case, the data destination could be either a node or a user; and the source of the
data is from multiple users:

1. The submitters send data to a node using the Submit method to a network node,
indicating the final destination in the recipient parameter – either an email
address or a node address.

2. The node processes the data submission and returns a transaction Id to the
submitter. It then notifies the recipient the availability of the data, either through
email (to a user) or through the Notify method (to a node).

3. The recipient downloads the data using the provided transaction ID.
The network node should configure a new dataflow identifier for the dataflow with
minimal business process such as virus scanning, data validation and recipient
notification. The dataflow could be removed at the end of the flow cycle.
Since the flow is ad hoc, there may not be XML schema available for incoming
documents, so document validation could be optional. The ad hoc flow process is much
simpler in such situations. The node can be understood as a secure conduit between
the sender and receiver.
Ad hoc dataflow is really a special case of point-to-point exchanges, excepting that the
‘recipient’ is a single fixed point, and the transaction lifespan is much shorter.

6.6 Supporting Small Devices
Small devices such as handheld computers or smart phones could also be used in
exchanging data with a network node. Due to limited capability and memory spaces,
such devices can only exchange small, simple packets of data.

 49

• Data Submission: Small devices can only handle very limited data submissions,
typically form-based data that collected from the fields. For those handheld
devices that support web services, the data can be easily submitted to network
nodes. However, the node must support synchronous process and return final
transaction status immediately. This is possible because the amount of data is
very limited. It is also possible to build an HTML form to support data collection
efforts where an HTTP server acts as a proxy for a network node.

• Data Request: Data requests from small devices also need special handling.
There are two approaches to reduce the size of data. The first approach is to
create services that always return limited data, such as air quality data in a zip
code region, or facility information in a small area. The second approach is to
support query result paging where a device will only ask for a limit number of
rows.

There are potentially many types of small devices not used directly by human beings,
such as smart data sensors or environmental monitoring devices, which could send
streams of data to a node in a fixed time interval.

6.7 Using External Web Services
The Network Node Functional Specification V2.0 opens new avenues for accessing
external web services through the node interface. A network node may act as a generic
web service proxy and publish other web services through the Execute method.
A node client application, on the other hand, can perform dynamic binding to the
external web services and pass required parameters to the Execute method. At
runtime, the node would invoke the remote services and return a response message
back to the client.
One of the key advantages of such web service invocations is that the client application
does not need to generate or develop any new code in order to access external web
services.
The process of invoking external web services can be outlined below:

1. The requester calls the GetServices method to retrieve a list of web services
that can be invoked using the Execute method.

2. The node responds with a service description list which contains all binding
information such as interface names, web method names and parameters.

3. The requester calls the Execute method based on the description, indicating the
web method to be invoked and passing all required parameter values.

4. The node binds the parameter to the external method and calls the remote web
services. It returns a transaction ID, status and results, which contains the
response from the remote service.

5. The requester processes the response message from the node. If the status is
pending, the request was processed asynchronously, and the results can be

 50

downloaded later when ready. If the status is complete or finished, the results
element contains the response from the remote web services.

Note: if the remote service invocation failed, the node should forward the SOAP fault
message to the original requestor.

 51

7 Describing Network Services
Ultimately, the Exchange Network is a dynamically expanding set of environmental
information services. This vision will require a sophisticated and machine-readable
process for the description of services so that clients can use them immediately.
There are two basic languages for describing network node services: Web Service
Description Language (WSDL) and Node Service Description Language (NSDL).
WSDL is a W3C specification that is widely adopted as the standard for describing web
services. There are two version of WSDL specifications, version 1.1 and version 2.0. At
the time of this writing, WSDL 2.0 is still not widely implemented in all platforms.
Therefore, the Network Node 2.0 WSDL file is based on WSDL 1.1.
The NSDL is a supplemental language that describes low-level details about service
requests. Descriptions for the Query, Solicit and Execute method in the WSDL file are
insufficient for service request invocation and parameter binding because they are
defined as very generic web service operations.
NSDL contains three basic elements:

• Node Description: The element contains node name, address, version,
deployment environment and technical contact information.

• Service Description: The element defines service name, type, dataflow and
parameters.

• Parameter Description: The element includes parameter name, type,
occurrence and other restrictions.

There are two mechanisms where data services and other executable services can be
published: The GetServices method and the Exchange Network Discovery Services
(ENDS). All network nodes must support the GetServices, which returns an XML
instance document of NSDL. The document should contain all services a node support
along with parameter definitions.
The ENDS, on the other hand, contains service descriptions of all network nodes. The
detailed technical specification of ENDS is out of scope of this document. ENDS is a
set of services hosted on a special Network Node, and service descriptions can be
obtained through the Query method.
For applications that interact with only a single node, the GetServices method of the
node should be used for discovery purposes. For applications that target multiple
nodes, the Exchange Network Discovery Services should be used instead.
In order to reduce unnecessary network traffic, it is a best practice to cache NSDL
documents locally for a period of time. The cache may be refreshed either manually or
on a scheduled basis.

 52

8 Publishing and Discovering Network Services through UDDI
All web services must be registered in the Network Registry and be referenced in the
Flow Configuration Document. UDDI is the specification for describing, discovering and
integrating web services. It enables network participants to both publish and find web
services.
The Exchange Network will create and operate one private UDDI registry shared by all
nodes. The host of the UDDI service is called the UDDI operator.
One of the lessons learned from the public UDDI registries is that the quality of a
registry determines its usefulness. Therefore, it is important to have a closely
controlled, managed and maintained registry service for the network exchange. The
scale of the registry may be low, but the accuracy and precision must be high in order to
have sound discovery and smooth integration.

8.1 UDDI Data Model
A UDDI registry has four (4) major entity types:
1. businessEntity: Describes a business or an organization that provides web

services.
2. businessService: Describes a set of services provided by a businessEntity.
3. bindingTemplate: Defines how services can be accessed. bindingTemplate

provides the technical information needed by applications to bind and interact with
the Web service.

4. tModel: Describe a technical model. It often contains an abstract definition of a
web service (Web Service Type).

All nodes participating in the network exchange must register as a business entity in the
UDDI registry. There is a dependency between businessEntity and businessService: a
businessService cannot exist without a provider (i.e., a business).

8.2 Publishing Rules
The goal of the private UDDI registry is to create an accurate, consistent, dedicated
registry for environmental information exchange. It is thus necessary to establish rules
and guidance on who can publish, where to publish, and how to publish.
1. A service provider must be approved in order to register in the UDDI registry.
2. A participating node can create business entities, business services and binding

templates in the registry.
3. The UDDI operator must perform a Quality Assurance (QA) review on all newly

created entities.
4. It is the responsibility of the node to provide reliable web services once

registered.

 53

5. The node operator is responsible for creating a tModel, registering common
interfaces (for instance, the Send interface, the Receive Interface, the Database
interface and the Admin interface).

6. Authentication is required for all publishing operations.
When searching for web services, one of the key pieces of information requesters are
looking for is the WSDL file associated with the web services. The WSDL file is
registered as the overview URL of a tModel in the UDDI registry. Since a tModel
represents a type of web service, i.e. a common abstract interface, the WSDL file,
pointed to by the overview URL must not have any service definition (the <service> tag).
To register a web service that complies with a tModel, the provider then creates a
business service with a binding template pointing to the tModel. In other words, the
tModel Instance of the service has the same tModel key as the tModel. This is how the
web service is associated with the tModel, and where the WSDL file can be located.

8.3 Inquiry Functions
• find_binding
• find_business
• find_relatedBusinesses
• find_service
• find_tModel
• get_bindingDetail
• get_businessDetail
• get_businessDetailExt
• get_serviceDetail
• get_tModelDetail
In a typical application scenario, to discover and to invoke a web service dynamically, a
requester uses the following invocation sequence:
1. Call find_service with a set of search criteria. This returns a list of web services.
2. Choose the best one from the service list, and invoke the get_serviceDetail

method. The bindingTemplate inside the service entity should have an
accessPoint, which is where service requests should be sent.

3. Get the tModelKey from the bindingTemplate, and call the get_tModelDetail
method. This provides the WSDL file associated with the service.

4. Invoke the web service using the accessPoint and the service definitions
(WSDL).

 54

The procedure for searching a UDDI registry is further elaborated in Section 9.1 -
Accessing Service Information in UDDI.

8.4 Publishing Functions
• add_publisherAssertions
• delete_binding
• delete_business
• delete_publisherAssertions
• delete_service
• delete_tModel
• discard_securityToken
• get_assertionStatusReport
• get_securityToken
• get_publisherAssertions
• get_registeredInfo
• save_binding
• save_business
• save_service
• save_tModel
• set_publisherAssertions
This set of functions is used to publish and update information contained in the UDDI
registry. The publisher assertion APIs are for modeling complex business relationships,
which are rarely used in the Network Exchange Protocol V2.0.
To protect the registry, users are required to login using the get_securityToken function
before publishing any data in the registry.

8.5 UDDI Errors
UDDI Errors are presented as SOAP faults. In addition to the standard fault elements
mandated by the SOAP specification, a UDDI fault message contains a
dispositionReport in which registry-specific errors are included. The following sample
shows the structure of a UDDI fault message:

<Envelope xmlns="http://schemas.xmlsoaporg.org/soap/envelope/">
 <Body>
 <Fault>
 <faultcode>Client</faultcode>
 <faultstring>Client Error</faultstring>
 <detail>
 <dispositionReport xmlns="urn:uddi-org:api_v3">
 <result errno="10500">

 55

 <errInfo errCode=“E_fatalError">The findQualifier
 value passed is unrecognized</errInfo>
 </result>
 </dispositionReport>
 </detail>
 </Fault>
 </Body>
</Envelope>

The disposition report in this example contains an errno, an errCode, and an error
description. Note that the errno (numeric code) and errCode (string error code)
represent the same error in different forms.
Common UDDI error codes are listed below:
• E_securityTokenExpired
• E_securityTokenRequired
• E_busy
• E_fatalError
• E_requestTimeout
• E_unrecognizedVersion
• E_unsupported

 56

9 Interacting with Network Registries & Repositories
UDDI is a directory or registry, not a depository or repository. This means that UDDI
does not physically store WSDL or XML schema files. So, in order to operate properly
and efficiently, there needs to be external storage for all WSDL and DET files.
All referenced schema and WSDL files can either be stored in a virtual directory, or
distributed to their owners. There are different strategies to reduce inconsistencies and
maintenance cost. All the schemas must be referable using URIs under the
requirements of XML namespaces as well as the import/export operations.

9.1 Accessing Service Information in UDDI
There are four key data elements inside UDDI: Companies, Services, Binding
Templates and tModels. Services on the Network, unlike those in public UDDI
registries, are provided primarily by state nodes and the EPA node. Each service is
assigned a unique key at the time of creation. It is easy to retrieve service details given
the service key as shown by the following UDDI request message:
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<Body>

 <get_serviceDetail xmlns="urn:uddi-org:api" generic="1.0">

 <serviceKey>d5921160-…</serviceKey>

 </get_serviceDetail>

</Body>

</Envelope>

The response would be the service details including an access point, a service
description and a tModel key. It, however, does not contain information about the
WSDL file. To get the WSDL file, which is essential for invoking the service, one needs
to get the tModel details using the obtained tModel key:

<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<Body>

 <get_tModelDetail xmlns="urn:uddi-org:api" generic="1.0">

 <tModelKey>uuid:0e727db0-4…</tModelKey>

 </get_tModelDetail>

</Body>

</Envelope>

The overviewDoc, as shown below in the response, points to the location of the WSDL
file:

 57

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <soap:Body>

 <tModelDetail generic="1.0" operator="EPA CDX Private" truncated="false"
xmlns="urn:uddi-org:api">

 <tModel tModelKey="uuid:0e727db0-3e14-…" operator="epa.gov/node/uddi"
authorizedName="0100001QS1">

 <name>State Node Interface 1</name>

 <description xml:lang="en">Notification Interface for State
Node</description>

 <overviewDoc>

 <description xml:lang="en">wsdl link</description>

<overviewURL>http://www.exchangenetwork.net/schema/v1.0/node.wsdl</overviewUR
L>

 </overviewDoc>

 <categoryBag>

 <keyedReference tModelKey="uuid:…" keyName="uddi-org:types"
keyValue="wsdlSpec" />

 </categoryBag>

 </tModel>

 </tModelDetail>

 </soap:Body>

</soap:Envelope>

From a programming point of view, a web service is completely described, and thus
accessible, given the access point and its WSDL file.

9.2 Dynamic Invocation of Web Services
As described in previous sections, the UDDI registry is the key for building loosely
coupled dynamic web service applications. When a web service is moved to a different
host, the service provider would update the service information in the UDDI and it would
be available to all client applications immediately. The change will, in general, have
very little impact on the client as well as other network nodes if a proper procedure is
followed.
The procedure for invoking a web service dynamically is outlined below:
1. Retrieve the access point and the WSDL location from the UDDI registry.
2. Download the WSDL file, normally through either HTTP or FTP.
3. Construct a request message based on definitions in the WSDL file.

 58

4. Send the request message to the access point.
5. Process the response.
Note that if the request message is constructed at run-time, the network will achieve
maximum flexibility. It can even accommodate interface changes, such as redefining
parameter types or adding new parameters.
Maximum flexibility is obtained at the cost of performance. As can be seen from the
procedure above, several Internet connections have to be established before actually
invoking a web method. Since WSDL files are relatively stable, the recommended
approach is to cache the files locally for subsequent invocations, and to refresh the files
when a network error occurs. The procedure is revised as follows:
1. If there is a local cache of the WSDL file, go to step 4.
2. Retrieve the access point and the WSDL location from the UDDI registry.
3. Download the WSDL file, normally through either HTTP or FTP, and save a local

copy for future use.
4. Construct a request message based on definitions in the WSDL file.
5. Send the request message to the access point.
6. If the response status is a network error and the cache is old, go back to step 2.
7. Process response messages.
This approach, known as one of the best practices in web services and UDDI
integration, allows requesters to consult the UDDI registry only when necessary, which
reduces the load on the UDDI server and boosts performance of the node services.

9.3 Using UDDI for Broadcasting
Broadcasting allows a network node to send messages to multiple recipients (listeners).
The broadcaster node sets up an abstract interface (e.g., status notification method) as
a tModel in the UDDI registry. Network nodes that would like to join the broadcast
register a web service in UDDI that supports the required interface methods (e.g., a web
service that supports the Notify method). This allows the broadcaster to find all
listeners using a simple UDDI request similar to the following:

<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<Body>

 <find_service businessKey="*" xmlns="urn:uddi-org:api" generic="1.0"
maxRows="100">

 <findQualifiers></findQualifiers>

 <name>%%</name>

 <tModelBag>

 <tModelKey>UUID:0E7F7DB0-3E14-11D5-98BF-
002035229C64</tModelKey>

 59

 </tModelBag>

 </find_service>

</Body>

</Envelope>

Suppose UUID:0E7F7DB0-3E14-11D5-98BF-002035229C64 is a tModelKey assigned to an
intrusion detection interface. Then the above request returns all network nodes that are
willing to be notified when the event occurs. Armed with a list of endpoints and the
WSDL file, it is not difficult for the broadcaster to call all the listeners concurrently or
sequentially. Figure 20 shows a sequence of operations that involves three parties.

Requester UDDI Registry «implementation class»
Provider

find_service(tModelKey:string(idl))

get_serviceResponse(ListOfServices:Object)

get_tModelDetail(tModelKey:String)

get_tModelDetailResponse(WSDL_Location:String)

get_ServiceDetail(serviceKey:String)

get_serviceDetailResponse(EndpointURL:String)

Authenticate(userId:String, credential:String, autheticationMethod:String)

securityToken()

Notify(securityToken:String, nodeAddress:String, dataflow:Single, documents:nodeDocument)

NotifyResponse(TransactionId:String)

Figure 20 – Broadcast Operation Using UDDI Registry

 60

10 Security
A major requirement of the Protocol is that it facilitates and participates in establishing
and maintaining secure communications. There are three parts to security: prevention,
detection and response. The Network is responsible for providing for prevention
through the mechanisms discussed below. The individual trading partners are
responsible for providing for detection of and response to security breaches within their
purview.
SOAP and web services have proven to be a powerful framework for creating
distributed computing networks and for conducting large scale information exchanges.
They are, at the same time, a big challenge to information security. Due to the nature of
SOAP transports, which are based on public information exchange protocols for the
Internet, web services open the doors for direct and indirect attacks from hackers and
enemies alike. Web services without security measures are very vulnerable.
This section discusses available technologies for securing web services, and addresses
security issues from three major areas: Authentication/Authorization, Confidentiality and
Integrity.

10.1 Applicable Security Protocols

10.1.1 HTTP Security
HTTP offers some basic authentication services on the transport level. The HTTP
Specification (RFC 2616 and RFC 2617) defines an authentication mechanism known
as "Basic" authentication. A client is challenged to provide identification information if
authentication is required. The client then sends user name and password in the
Authentication header. At this time, the user credentials can be passed to the web
service for verification.
A more secure but less popular HTTP authentication scheme is the Digest Auth.
Instead of sending user passwords through the wire, Digest Auth sends an MD5 hash (a
one-way hash algorithm that produces a "fingerprint" of the given data) of the user
name, password, and other security elements to the server.
HTTP authentication schemes are considered weak in term of confidentiality.
Information exchanges between client and server are clear text, which are subject to
attacks. Therefore, HTTP authentication is not recommended for securing node
operations.

10.1.2 SSL
Basic network security will be provided through SSL. Since its introduction in 1995,
SSL has become the de facto way to secure communications between HTTP
requesters and HTTP servers. It provides adequate confidentiality at the session layer,
where data is encrypted by the senders and decrypted by the recipient using public key
technologies. SSL, however, does not always provide a suitable method of
authentication. Unlike B2C applications where the identity of a service provider is the
main concern (client-side risk), client identities become the focus for web services

 61

(server-side risk). Client side authentication through SSL, although possible, is always
questionable due to the complexity of certificate management and the relatively high
cost.

10.1.3 PKI
Public-key infrastructure (PKI) is the combination of software, encryption technologies,
and services that verify and authenticate the validity of each party. PKIs integrate digital
certificates, public-key cryptography, and certificate authorities into a network security
architecture.
While PKI provides an effective, robust means of securing electronic communications
and transactions, deploying and managing the technology remains a daunting challenge
to many organizations, especially in a large-scale deployment.

10.2 Security Levels
There are four levels of security supported by the Network Exchange Protocol V2.0. All
message structures will incorporate (be surrounded by and encoded in) the various
security protocols associated with that security level.

10.2.1 Public Access
Public information requires no authentication or certification of integrity.

10.2.2 SSL with Client Authentication
Information requires some additional level of authentication and a higher level of
integrity protection. It is protected through SSL plus application level client
authentication (username and PIN). The Network Exchange Protocol V2.0 requires that
this level of security must be implemented by all nodes participating in the network
information exchange.

10.2.3 SSL with Dual-authentication
Information requires bi-directional authentication and a higher level of confidentiality. It
is often protected using SSL with dual authentication. SSL with dual-authentication will
be required depending on the dataflow, but is not mandatory for all network
transactions.

10.2.4 Digital Signature
Information requires non-repudiation and integrity protection in addition to privacy and
authentication. Digital signature may be required by some dataflows. When required, it
is strongly recommended that XML-Signature be used for digitally signing the
documents, and the signature be inserted into the SOAP header part of the message
under such situations.

 62

10.3 Authentication and Authorization
All operations, except NodePing, in the Network Exchange Protocol V2.0 are restricted
to registered users only. The restriction requires a user to be authenticated successfully
before any other operations can be conducted.
Authentication is a process of establishing trust (i.e., who the remote party is and what
kind of privilege it has). Authorization relies on a good authentication scheme to protect
network resources.
Authentication is also necessary for establishing security policies based on users or
user groups. It is also important for creating trusted relationships among network nodes
(trusted peer relationship), so that highly confidential message exchanges, such as
intrusion notifications, are possible between peers.
Authorization is a process of establishing entitlement of a subject. A user, although
authenticated, may not be allowed to access certain network services based on a
security policy. Given the authenticated user identity (the subject) and the security
policy of a network resource (the object), a network node can determine whether or not
to grant access. Authorization typically is a more complicate process than
authentication; it is discussed further in the Network Node Security Guideline and
Recommendations document.
To gain access to web services provided by network nodes, a user must first send an
Authenticate message similar to the following:
<SOAP-ENV:Envelope xmlns:SOAP-ENV=" http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
 <SOAP-ENV:Body>
 <typens:Authenticate
xmlns:typens="http://www.exchangenetwork.net/schema/node/2">
 <typens:userId>jsmith@example.com</typens:userId>
 <typens:credential>********</typens:credential>
 <typens:domain>galaxy</typens:domain>
 <typens:authenticationMethod>digest</typens:authenticationMethod>
 </typens:Authenticate>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The Authenticate message contains three elements:

• userId: User Id

• credential: a password, a secure key value, or even a digital fingerprint, issued
by the network node operator

• domain: The domain of user identities. The Exchange Network users are in the
‘default’ domain.

 63

Upon successful authentication, the network node returns a security token, otherwise
known as the digital ticket that will expire after a predefined time period. The user then
includes the security token in all subsequent request messages as a proof of identity.
A SOAP Fault message - Unknown User - is returned if authentication fails.
A securityToken is an opaque string that is meaningful only to its issuer. It is usually an
encrypted string that contains information useful for the validation of the ticket, and
incomprehensible to its holder. To prevent replay attack, it must contain a timestamp so
that token expiration can be enforced.
A simple securityToken may contain the requester’s IP address, the user Id or profile
name, a session ID for state tracking, and a timestamp for expiration. The result string
is then encrypted and encoded using some secret algorithms.
A properly constructed securityToken can be highly secure. The issuer may validate
the requester, the requester’s machine and the timestamp. A stolen ticket has to be
used on the same host within a very limited time window in order to cause a security
breach.
This authentication process is based on the assumption that user registration and
authentication are system specific, and beyond the scope of this document.

10.4 Central and Federated Authentications
A securityToken may, ideally, be issued through a central authentication server or a
central security management (CSM) service. This approach, based on the NAAS is
proposed by the Node 1.1 group for initial network flows and it is also recommended for
Network Node 2.0 by the Network Technologies Group (NTG).
This model has numerous advantages in several areas:
1. Simplified Implementation: Using CSM, state nodes can simply delegate all

security related tasks to the CSM service. For instance, the implementation of the
Authenticate method and validation of authentication token become simple
SOAP service requests.

2. Enhanced Security: With central security services, security risks shift from
distributed nodes to one CSM system. Defending the network services is much
easier from one point than from many points.

3. Cost Effectiveness: Security systems and related products are costly. A CSM
service can dramatically reduce acquisitions of such product at state nodes.

4. Highly Extensible: Upgrading security system to new technologies, e.g., from
username/password to a PKI-based authentication using certificates, can be
done relatively easily with the CSM system.

5. Single Sign-On (SSO): Since authentication and validation take place at a single
node, the security token issued by CSM is applicable to all nodes in the network.

 64

6. Security Monitoring: With CSM, it is possible to monitor all activities of the
overall network from a single location. This is essential for intrusion detection and
vulnerability management.

The tokens issued by CSM are recognized and honored by all participating network
nodes in a trusted relationship. A central authentication server facilitates single sign-on.
Users need only register or login once in order to access services provided by all
network nodes.
In a federated authentication scheme, however, each node owns and manages a set of
user identities locally, and each node is authorized to issue securityTokens. The
securityTokens are recognized and honored by other nodes in a trusted group. A
federated authentication scheme is a distributed authentication system where network
nodes are autonomous, in that they have authoritative control over user identities
registered at their site.
Single sign-on (SSO) can be achieved relatively easily in a centralized authentication
environment. Figure 21 shows a simplified single sign-on configuration.

Figure 21 – Single Sign on Configuration

The process of SSO is outlined below:

 65

1. The client sends a name and credential to the authentication server. The server
returns a securityToken when successful.

2. The client then invokes a remote method on a network node, using the
securityToken.

3. The node sends the securityToken to the authentication sever for verification.
4. The authentication server checks the securityToken, and returns either a positive

or negative answer.
5. The node processes the request if the securityToken is valid.
Standards for establishing distributed trust relationships are currently under
development. The Network Exchange Protocol V2.0 should incorporate such standards
when available. Until then, a simple solution would be the use of a shared secret
among network peers. The authentication node, Node A for instance, generates a
session key using the secret, and then encrypts the securityToken using the session
key. When the user presents the securityToken to Node B, the node can generate the
same session key using the given secret, and decrypt the token.
This discussion is provided to illustrate the extensibility of security approach described
in this protocol. It is expected, that in the first 12-18 months of node implementations,
that the NAAS approach will suffice for state/tribal/EPA flows. Partners will likely extend
this approach locally for flows with regulated entities and others.
Note the following sections provide additional discussion of security issues but are not
normative parts of the Network Exchange Protocol V2.0.

10.5 Message Confidentiality
Confidentiality is assured in most situations where messages are delivered through
HTTPS transport. There are several situations; however, message may be
compromised during transaction if not encrypted:

1. Use of transports such as SMTP or FTP.
2. Use of WS-Routing when messages travel over intermediaries.

It is strongly recommended that messages be encrypted using XML-Encryption under
such application scenarios.

10.6 Message Integrity and Non-repudiation
SOAP message integrity can be protected using digital signatures, which assures that
contents of a document were not tampered with during transition. Contrary to the
popular belief that digital signature offers more protection than encryption, signature and
encryption are actually integral parts of one thing: information security. Encryption only
hides contents of a document; the contents can still be altered during transition. On the
other hand, a digitally signed document without encryption is similar to sending an open
letter without sealing it.

 66

Another very important aspect of digital signature is non-repudiation. Some documents
may require a digital signature to be considered valid by certain dataflows from a legal
point of view. Digital signature is no longer an optional feature in such situations.
The WS-Security specification, proposed by IBM and Microsoft, defines a set of
processes and rules that applications must follow in order to be compliant and
interoperable. It is desirable that the SOAP stack provider supplies an implementation
of WS-Security as part of the SOAP toolkit.
For messages with attachments, calculation of digest should include all attached files.
In other words, both the SOAP main message part and attachments should be
protected by signing a combined digest of all parts.
An alternative approach is to generate a signature for each individual part, body and
attachments, and insert multiple signatures in the SOAP message header. The
approach adds extra processing in the SOAP header, but allows more flexible signature
verification. Signatures, when present in a SOAP header, must have the
mustUnderstand attribute set to true. Validation of signatures is mandatory on the
receiver end.
The following SOAP header shows a dynamically generated digital signature:
<SOAP-ENV:Header>

<SOAP-SEC:Signature xmlns:SOAP-
SEC="http://schemas.xmlsoap.org/soap/security/2000-12" SOAP-
ENV:mustUnderstand="1">

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

<SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<Reference URI="#Body">

<Transforms><Transform
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315"/></Transforms>

<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/><Digest
Value>9r1eQL2syybnZXfx5wOECvl5nrs=

</DigestValue></Reference>

</SignedInfo>

<SignatureValue>MIIHbAYJKoZIhvcNAQcCoIIHXTCCB1kCAQExCzAJBgUrDgMCG
gUAMIIByQYJKoZI

jUVNX7rDA=

</SignatureValue>

<KeyInfo>

<KeyName>soapclient.com</KeyName>

 67

<KeyValue>BgIAAACkAABSU0ExAAQAAAEAAQBHednVT1COLGAohJZqB8R1q
RUptRQbpWRhSZKG

GMmTU3s5m5TNe4iY4oP1/NxrjXCE7PjRX062y7mAKdkj55FcvDMhTcVLF5O
5xJTO

SVY5j8tcVpkTFKFKS3UXcJ1nyx+9UvwzGNzhKMgF8GIDHT58ZGz3yjbzb3V
mwmmW

0cdJvw==

</KeyValue>

</KeyInfo>

</Signature>

</SOAP-SEC:Signature>

</SOAP-ENV:Header>

The signature value is truncated for clarity. In this digital signature, the signer provided
not only a signature value encrypted using a private key, but also a public key (in the
KeyValue element) for decrypting the signature. The document is thus self-contained,
verifiable by anyone who knows how to process a signature.

 68

11 References
1. Network Exchange Functional Specification, Prepared for EPA by CSC, March

14, 2003.
2. Advanced SOAP for Web Development, Dan Livingston, Copyright 2002,

Prentice Hall PTR, Upper Saddle River, NJ, 07458.
3. Web Services Essentials, Ethan Cerami, Copyright 2002, O’Reilly & Associates,

Sebastopol, CA, 95472.
4. Programming Web Services with SOAP, James Snell, Doug Tidwell, Paul

Kulchenko, Copyright 2002, O’Reilly & Associates, Sebastopol, CA, 95472.
5. XML Boot Camp Training Manual, TRG/Node 1.0 XML BOOT CAMP, June 10-

11, 2002, SAIC, LMI, enfoTech, Philadelphia, PA.
6. Message Service Specification, Version 2.0 rev C, OASIS ebXML Messaging

Services Technical Committee, February 2002.
7. W3C Node "Simple Object Access Protocol (SOAP) 1.1", May 22, 2000. (See

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/).
8. WS-Security, version 1.0. April 5, 2002.
9. W3C Working Draft "SOAP Version 1.2 Part 1: Messaging Framework", Martin

Gudgin, Marc Hadley, Jean-Jacques Moreau, Henrik Frystyk Nielsen, 26 June
2002 (See http://www.w3.org/TR/2002/WD-soap12-part1-20020626.)

10. W3C Working Draft "SOAP Version 1.2 Part 2: Adjuncts", Martin Gudgin, Marc
Hadley, Jean-Jacques Moreau, Henrik Frystyk Nielsen, 26 June 2002 (See
http://www.w3.org/TR/2002/WD-soap12-part2-20020626.)

11. W3C Recommendation "Namespaces in XML", Tim Bray, Dave Hollander,
Andrew Layman, 14 January 1999. (See http://www.w3.org/TR/1999/REC-xml-
names-19990114/.)

12. W3C Node "SOAP Messages with Attachments", John J. Barton.
13. Satish Thatte, Henrik Frystyk Nielsen, December 11, 2000.
14. Internet Draft " Direct Internet Message Encapsulation (DIME)”, Henrik Frystyk

Nielsen, Henry Sanders, Russell Butek, Simon Nash, June 17, 2002.
15. UDDI Version 3 Specification - http://uddi.org/pubs/uddi-v3.00-published-

20020719.htm, July 19, 2002.
16. W3C Node “Web Services Description Language (WSDL) 1.1”, Erik Christensen,

Francisco Curbera,Greg Meredith, Sanjiva Weerawarana, March 15, 2001 (See
http://www.w3.org/TR/wsdl).

