

Network Node
Functional Specification

Version 2.1

Revised Date: June 24, 2011

Abstract
This Functional Specification provides a detailed
description of the expected behavior of an Exchange
Network (EN) Node, including function invocation and
expected output.

 i

Revision History

Change Record

Version
Number Description of Change

Change
Effective

Date
Change

Entered By

2.0 Final 2.0 Specification June 2, 2008 Dr. Yunhao Zhang

2.1 • Changed encoding style of node to
all MTOM (Section 5)

• Clarified transaction status code
and descriptions (Section 3.5, 7.8)

• Added more descriptive language
for Fault error codes (Section 3.8)

• Added a section on Node
Interoperability Considerations
(Section 6)

March 16,
2011

Dr. Yunhao Zhang

 i

Table of Contents

1	 Introduction and Terminology .. 1	

1.1	 Introduction .. 1	
1.2	 Terminology .. 1	
1.3	 Principles, Assumptions, and Constraints .. 2	
1.4	 Requirements ... 2	

2	 Namespaces and Encoding Rules ... 4	
3	 Data Types and Usage Conventions ... 5	

3.1	 Generic XML Type .. 5	
3.2	 Document Types .. 5	
3.3	 Node Document Type .. 6	
3.4	 Result Set Type .. 7	
3.5	 Status Response Type ... 8	
3.6	 Parameter Type .. 9	

3.6.1	 Parameter Binding .. 10	
3.6.2	 Parameter Semantics ... 11	

3.7	 Notification Message Type .. 11	
3.8	 Node Fault Detail Type .. 11	
3.9	 NotificationURI Type .. 14	

4	 Network Service Interfaces .. 16	
5	 Message Encoding and MTOM Attachment .. 17	

5.1	 Node Server MTOM Behaviors .. 17	
5.2	 Node Client MTOM Behaviors ... 18	

6	 Interoperability Considerations ... 19	
6.1	 SOAPAction .. 19	
6.2	 Handling of WS-* and Other Web Service Standards 19	

7	 Node Web Methods ... 21	
7.1	 Authenticate ... 21	

7.1.1	 Description .. 21	
7.1.2	 Definition ... 22	
7.1.3	 Arguments ... 23	

 ii

7.1.4	 Return ... 24	
7.1.5	 Example .. 24	

7.2	 Submit ... 25	
7.2.1	 Description .. 25	
7.2.2	 Definition ... 25	
7.2.3	 Arguments ... 25	
7.2.4	 Return ... 27	
7.2.5	 Example .. 27	

7.3	 Download .. 28	
7.3.1	 Description .. 28	
7.3.2	 Definition ... 28	
7.3.3	 Arguments ... 29	
7.3.4	 Return ... 30	
7.3.5	 Examples .. 30	

7.4	 Query ... 31	
7.4.1	 Description .. 31	
7.4.2	 Definition ... 31	
7.4.3	 Arguments ... 32	
7.4.4	 Return ... 32	
7.4.5	 Example .. 33	

7.5	 Solicit .. 33	
7.5.1	 Description .. 33	
7.5.2	 Definition ... 34	
7.5.3	 Arguments ... 34	
7.5.4	 Return ... 35	
7.5.5	 Example .. 35	

7.6	 Notify ... 36	
7.6.1	 Description .. 36	
7.6.2	 Definition ... 36	
7.6.3	 Arguments ... 36	
7.6.4	 Return ... 37	
7.6.5	 Examples .. 37	

 iii

7.7	 Execute ... 39	
7.7.1	 Description .. 39	
7.7.2	 Definition ... 40	
7.7.3	 Arguments ... 40	
7.7.4	 Return ... 40	
7.7.5	 Example .. 41	

7.8	 GetStatus .. 42	
7.8.1	 Description .. 42	
7.8.2	 Definition ... 42	
7.8.3	 Arguments ... 42	
7.8.4	 Return ... 42	
7.8.5	 Example .. 43	

7.9	 GetServices .. 44	
7.9.1	 Description .. 44	
7.9.2	 Definition ... 44	
7.9.3	 Arguments ... 45	
7.9.4	 Return ... 45	
7.9.5	 Examples .. 45	

7.10	 NodePing .. 46	
7.10.1	 Description .. 46	
7.10.2	 Definition ... 46	
7.10.3	 Arguments ... 47	
7.10.4	 Return ... 47	
7.10.5	 Examples .. 47	

8	 Service Administration ... 49	
8.1	 Transaction Handling .. 49	
8.2	 Logging ... 50	

Appendix A - References ... 51	

 iv

Table of Tables
Table 2: Commonly Used File Content Types .. 7	
Table 3: Parameter Encoding Types .. 10	
Table 5: Methods Supported in Each Interface .. 16	
Table 6: Authentication Method Descriptions ... 23	
Table 8: Service Status Codes ... 47	
Table 9: Transaction Tracking Minimum Elements .. 49	
Table 10: Document Tracking Minimum Elements ... 50	

Table of Figures
Figure 1. Static UML Diagram for Network Node Services……………………………….16

 1

1 Introduction and Terminology

1.1 Introduction
This document describes expected behavior of an Exchange Network Node version 2.1.
It defines functions the node performs, how it invokes these functions, and the expected
output.

1.2 Terminology

Term Definition/Clarification
CID Content Id

DBMS Database Management System
DET Data Exchange Template
DIME Direct Internet Message Encapsulation
EN

EPA
Exchange Network
Environmental Protection Agency

MTOM Message Transmission Optimization Mechanism
Exchange Network Environmental Information Exchange Network

NAAS Network Authentication and Authorization Services. This is a set
of centralized security services shared by all network nodes.

PKI Public Key Infrastructure
RPC Remote Procedure Calls

SAML Security Assertion Markup Language
SOAP Simple Object Access Protocol
SSL Secure Sockets Layer

TRG Technical Resource Group

UML Unified Modeling Language. The industry-standard language for
specifying, visualizing, constructing, and documenting the
artifacts of software systems.

URL Uniform Resource Locator
UUID Universal Unique Identifiers
W3C World Wide Web Consortium

WSDL Web Service Definition Language. An XML format for describing
network services as a set of endpoints operating on messages.
Message definitions in WSDL are used in this document.

XML Extensible Markup Language

 2

Term Definition/Clarification

XML Namespace XML Namespace is a collection of names, identified by a URI
reference. Namespaces in XML documents provide processing
context and prevent name collisions.

1.3 Principles, Assumptions, and Constraints
Principles are rules or maxims that guide subsequent decisions. Principles consist of a
list of criteria involving business direction and good practice to help guide the
architecture and design.
Assumptions are expectations that form the basis for decisions, which if proven false,
would have a major impact on the project. They identify key characteristics of the future
that are assumptions for the architecture and design, but are not constraints.
Constraints are restrictions that limit options. They are typically things that must or must
not be done when designing the application. They identify key characteristics of the
future that are accepted as constraints to architecture and design.
The principles, assumptions, and constraints for the Network Node Functional
Specification V2.1 are:
1. The specification will be kept as simple as possible. This is to ensure

interoperability without unreasonable Network participation criteria.
2. The version 2.1 node specification will preserve sound features in version 1.0

specification so that the existing node components can be reused whenever
possible.

3. The version 2.1 specification will not be compatible with version 1.0 because the
SOAP and SOAP attachment protocols have changed. Therefore, version 1.0
nodes will be supported in parallel for a period of time to insure a smooth transition
to the version 2.1 specification.

4. The specification must be consistent with the Network Exchange Protocol V2.1.
5. The specification must be consistent with the Network Security Guidelines

provided in a separate document.
6. The specification must be consistent with the Network Registry Guidelines and

operation.

1.4 Requirements
These requirements describe what will be delivered as part of the Network Node
Functional Specification version 2.1. The Network Nodes implementing the Functional
Specification version 2.1 shall:
1. Support all critical requirements for data flows including the ability to “package” the

relevant data using Extensible Markup Language (XML) schemas developed by
Exchange Network partners.

 3

2. Support large payloads for data publishing.
3. Use SOAP 1.2 and MTOM (Message Transmission Optimization Mechanism) for

all request and response messages. Emerging industry standards will be used as
consistently as possible in the application of these protocols.

4. Implement, and be compliant with, security procedures identified in the Network
Exchange Protocol version 2.1.

5. Have access to an SMTP server for Nodes implementing the NotificationURI and
Recipient functionality.

 4

2 Namespaces and Encoding Rules
Messages defined in this specification use only Document/Literal encoding.
For purposes of the Network Node 2.1 project, the default XML namespace for data
types and structures is:
 http://www.exchangenetwork.net/schema/node/2
The target namespace used by the corresponding WSDL file is:
 http://www.exchangenetwork.net/wsdl/node/2
Throughout this document, typens is used as the prefix for the data type namespace
and tns (target namespace) is used as the prefix for the WSDL definition namespace.

 5

3 Data Types and Usage Conventions

3.1 Generic XML Type
In many data exchange scenarios, an Exchange Network Node needs to handle
arbitrary XML documents where the schema is known, unknown, or yet to be defined.
Such XML documents are defined as being GenericXMLType as below:

 <complexType name="GenericXmlType" mixed="true">
 <sequence>
 <any namespace="##any" minOccurs="1" maxOccurs="1"
 processContents="lax"/>
 </sequence>
 <attribute name="format" type="typens:DocumentFormatType"
use="optional" default="XML"/>
 </complexType>

The GenericXmlType is defined as a mixed-content type, allowing either a string value
or an XML element as its child. The optional format attribute is used to indicate the
content format for non-XML values. The content is assumed to be XML if the format
attribute is missing.
The main purpose of defining GenericXmlType as mixed content is to support XML
compression. The child XML element may be zipped and base64 encoded as a string
value inside the GenericXmlType with the DocumentFormatType set to ZIP. EN clients
receiving documents with the DocumentFormatType set to ZIP must first decode and
then unzip the value to get the actual data.
In order to maintain simplicity and interoperability among all Exchange Network
partners, uncompressed raw XML and compressed XML (using the ZIP archiving
technology) are the only two valid format types that may be used in GenericXMLType,
in addition to uncompressed string.
For XML data, the GenericXMLType must contain one, and only one, child element,
which has a namespace other than http://www.exchangenetwork.net/schema/node/2.
The XML processor should validate the contents of the child if a schema is specified.
The GenericXmlType is used in the Query method for returning arbitrary XML results
governed by XML schema definitions and the GetServices method whose schema is
defined outside this document. It is also employed by the Execute method for returning
XML responses.

3.2 Document Types
A document, the unit of exchange in the Network Exchange Protocol version 2.1, can be
formatted many different ways. The Exchange Network relies on three (3) common
document definitions.

 6

1. XML Documents: The most commonly used document type on the Exchange
Network. XML documents are structured using an external, predefined schema,
and may be included directly in the body of a SOAP message or attached outside
of the SOAP envelope via the MTOM/XOP attachment mechanism.

2. Non XML Documents: Data can be in a wide range of formats.
3. Compressed Documents: Documents that have been reduced in size using the

ZIP compression algorithm. Compressed documents have no predefined
structure, but may contain structured (XML) contents when decompressed.

The Network Exchange Protocol V2.1 facilitates document exchanges of all three (3)
categories. Table 1 shows how Network Exchange Interfaces provide support for these
documents.

Document Type Method Carrier Comment
XML All Methods Internal/Attachment

Non-XML Submit, Download Internal/Attachment

Compressed All Methods Attachment

In this case, Query
may return
compressed XML
only

Table 1: Network Exchange Interfaces Support

3.3 Node Document Type
A document in this specification is defined using XML schema, as a complex data type
(a structure):
 <complexType name="NodeDocumentType">
 <sequence>
 <element name="documentName" type="xsd:string"/>
 <element name="documentFormat" type="typens:DocumentFormatType"/>
 <element name="documentContent" type="typens:AttachmentType"/>
 </sequence>
 <attribute name="documentId" type="xsd:ID" use="optional" />
 </complexType>

Where DocumentName is the file name, DocumentFormat is one of the following:

• XML: An XML document.

• FLAT: A flat text file.

• BIN: A binary file.

• ZIP: A compressed file (usually large XML datasets) in ZIP format.

• ODF: Open Document Format.

• OTHER: An unspecified or unknown file type.
The value of the DocumentContent element is the actual document.

 7

The DocumentContent element is of AttachmentType, which is an extended
base64Binary type defined as:
 <complexType name="AttachmentType">
 <simpleContent>
 <extension base="xsd:base64Binary">
 <attribute ref="xmime:contentType" use ="required"/>
 </extension>
 </simpleContent>
 </complexType>

The type has the attribute xmime:contentType, which must be a standard MIME
content type. Commonly used contentTypes in the Exchange Network are listed in
Table 2 below.

File Type Content-Type

XML text/xml

ZIP application/zip

Image image/png

Text text/plain

Table 2: Commonly Used File Content Types

The optional attribute, documentId, should be constructed from a UUID which uniquely
identifies a document within each Node. The documentId is of type XML:ID which
requires the documentId to begin with an underscore (_) in combination with a letter or
number.
e.g. <typens:document DocumentId="_f654c35c-f223-4787-a947-8787f532d3fe">

Note that a NodeDocument can be considered a generic content holder which could
contain any object with a name, a type, and content.

3.4 Result Set Type
When a database query is executed, a network node returns a ResultSetType, which
contains the result set and paging information. The ResultSetType is defined as:
 <complexType name="ResultSetType">
 <sequence>
 <element name="rowId" type="xsd:integer" />
 <element name="rowCount" type="xsd:integer"/>
 <element name="lastSet" type="xsd:boolean"/>
 <element name="results" type="typens:GenericXmlType"/>
 </sequence>
 </complexType>

 8

• rowId: This is an integer for the first record contained in the result set sent to the
requestor. This value must not be less than -1 and must not be more than the
total number of rows in the result set minus one (n – 1). The rowId of the first
record of a complete result set is always 0. If a result set with no results is
returned, the rowId must be set to 0.

• rowCount: This is the number of records returned in the result set. This value
must be set to 0 if no records are returned.

• lastSet: This is a Boolean value indicating if the data is the last result set. A
value of true indicates no more data is available given the current parameters,
and false means that more data is available. If the service provider supports
positioned fetches, a consumer can retrieve the next result set by calling the
Query method with a new rowId equal to the last rowId of the last results set plus
the value of rowCount.

• results: This is a generic XML container that may hold any XML document,
either compressed or uncompressed.

For a result set that may span multiple tables, the rowId and rowCount should be the
properties of the first record in the set. See section 5.4 for more information on the
expected functionality of Query and positioned fetches.

3.5 Status Response Type
When a request is issued, a Network Node processes the request and returns status
information to the requester. The StatusResponseType is an XML structure that defines
what should be included in the response. It is specified as an XML element with 3
children:
 <complexType name="StatusResponseType">
 <sequence>
 <element name="transactionId" type="xsd:string" />
 <element name="status" type="typens:TransactionStatusCode" />
 <element name="statusDetail" type="xsd:string" />
 </sequence>
 </complexType>

• transactionId: A UUID that uniquely identifies the transaction across all network
nodes.

• status: A transaction status code:
o Received: The transaction has been received by the Node but has not yet

been processed or scheduled for processing.
o Processing: The transaction is currently being processed.
o Pending: Processing of the documents has not begun, and is either

scheduled to be processed at a later time or is awaiting approval.
Approved: The submission has been approved or certified if it needs

 9

approval. However, the documents have not been delivered to the
receiver yet.

o Processed: The request/submission has been processed at the node.
However, any payload associated with the transaction has yet to be
delivered to the final recipient, usually a backend process.

o Completed: The transaction has completed, no further action will be taken
on the request/submission.

o Failed: The transaction has failed. No further action will be taken on the
request/submission. The requester should reinitiate the transaction after
the problem is fixed.

o Canceled: The transaction has been canceled by the node administrator
or an approver.

o Unknown: The status of the transaction cannot be determined at this time.

• statusDetail: A string describes the current status. This value should provide
additional detail useful to the user as to the particular nature of the status code.

3.6 Parameter Type
One of major changes in the Exchange Network Node Specification version 2.1 method
invocations is the replacement of position-based parameter binding with name-based
binding, necessitated by the transition to a Document/Literal WSDL. In version 2.1,
parameters for data services and other web services are defined as:

<complexType name="ParameterType">
 <simpleContent>
 <extension base="xsd:string">
 <attribute name="parametnerName" type="xsd:string" use ="required" />
 <attribute name="parameterType" type="xsd:QName" use="optional"/>
 <attribute name="parameterEncoding" type="typens:EncodingType"
use="optional" default="None"/>
 </extension>
 </simpleContent>
</complexType>

ParameterType is an extension of xsd:string with the following attributes:

• Name: The name of the parameter.
• Type: The simple XML schema type of the parameter. It must be a qualified

name such as xsd:string. This attribute is optional and a parameter must be a
string if Encoding is not specified or the value of Type is None.

• Encoding: The encoding type of the parameter. See Table 3 for enumerated
encoding types. This attribute is optional. If not specified, the parameter is
assumed to be an unencoded string.

 10

Encoding Type Description

Base64 base64Binary encoded content.

ZIP A base64 encoded string representing ZIP compressed
content.

Encrypt Content encrypted using triple-des algorithm. This is
used for sending sensitive parameter such as passwords
or social security numbers.

Digest The content is a base64 encoded hash value of the
parameter.

XML XML structured contents. i.e., the parameter is an XML
string.

None No encoding.

Table 3: Parameter Encoding Types

For Query and Solicit requests, the Type and Encoding attribute may be present, but to
maintain interoperability across all Nodes, only the XML encoding type should be used.
When the Type and Encoding attributes are missing, the ParameterType is reduced to a
simple element with a Name attribute and a string value. Exchange Network Nodes
must accept and process parameters that are un-encoded strings or structured XML.
The ParamterType definition offers a powerful mechanism of passing arbitrary
parameters to a node, including virtually all data types, plus parameter compression and
encryption. The Type and Encoding attributes provide sufficient information for service
providers to do late parameter binding, which is needed by the Execute method.

3.6.1 Parameter Binding
With name-based parameter binding, the position of the parameters in the request
message is irrelevant. It is the service provider’s responsibility to associate each
parameter with the right value given its name. For example, the following parameters:
 <parameter Name='FacilityName'>Exxon</parameter>
 <parameter Name='ZipCode'>20001</parameter>

are equivalent to:
 <parameter Name='ZipCode'>20001</parameter>
 <parameter Name='FacilityName'>Exxon</parameter>

in the name-based parameter binding.

 11

3.6.2 Parameter Semantics
When an array of parameters is passed to Query or Solicit, parameters with different
names are associated using AND logic when querying the backend Database.
Parameters with the same name are associated using OR logic when constructing
database queries. For instance, the following parameter set indicates a search for
records with the facility name Exxon and a zip code of 20001 OR 20006.
 <parameter Name='FacilityName'>Exxon</parameter>
 <parameter Name='ZipCode'>20001</parameter>
 <parameter Name='ZipCode'>20006</parameter>

3.7 Notification Message Type
Notification message is an XML structure that allows a node to receive external events.
It can be used for document notifications, transaction notifications and event
notifications.
The NotificationMessageType is defined as follows:
 <complexType name="NotificationMessageType">
 <sequence>
 <element name="messageCategory"
type="typens:NotificationMessageCategoryType"/>
 <element name="messageName" type="xsd:string"/>
 <element name="status" type="typens:TransactionStatusCode"/>
 <element name="statusDetail" type="xsd:string"/>
 </sequence>
 <attribute name="objectId" type="xsd:ID" use="required" />
 </complexType>

This structure has the following elements:

• messageCategory: This is a notification type of either: Event, Document, or
Transaction, as defined in the NotificationType enumeration.

• messageName: The name of the notification message.

• status: The current status of the object.

• statusDetail: This is a string that contain human readable description of the
status.

• objectId: This is the unique ID associated with the notification object. It should
be the TransactionId for transaction notification, DocumentId for document
notification and Event Name for event notification. This attribute uses the
XSD:ID type, which requires an underscore (_) as the first character of the string.
Please refer to (http://www.w3.org/TR/xmlschema-2/#ID) for more information on
the XSD:ID type definition.

3.8 Node Fault Detail Type
The version 2.1 WSDL specifies the structure of a specific fault message,
NodeFaultDetailType, which must be sent whenever an error condition is raised by a
Node. The SOAP 1.2 Specification requires that this fault message be the child of the

 12

Detail element within the root Body element of the SOAP message (see example
below).
The ErrorCode element is a list of error codes that are specific to the Exchange Network
(see table 2 below), and the Description is a text string description of the error condition.
Although the Detail element is optional in the SOAP 1.2 specification, all Network
Nodes should provide fault detail information whenever possible. The Exchange
Network defines the NodeFaultDetail element, which is a child of the SOAP Detail, as
follows:
 <element name="NodeFaultDetailType">
 <complexType>
 <sequence>
 <element name="errorCode" type="typens:ErrorCodeList"
minOccurs="1" maxOccurs="1" nillable="false"/>
 <element name="description" type="xsd:string" minOccurs="1"
maxOccurs="1" nillable="false"/>
 </sequence>
 </complexType>
 </element>

The Network Exchange Protocol version 2.1 list of predefined Exchange Network error
codes is shown in Table 4.

Error Code Description
E_UnknownUser The user could not be found in the specified domain.

The error occurs when the user is not registered in the
domain or the user ID is incorrect.

E_InvalidCredential The user credential is invalid. The error occurs when
the security system could not verify user supplied
password or digital certificate.

E_TransactionId The supplied transaction ID could not be found. In
methods such as GetStatus or Download, a
transaction ID might be required and it must match a
previous transaction.

E_UnknownMethod The requested method is not supported. This
indicates that the name of the web method is not
defined in the Node Functional Specification.

E_ServiceUnavailable The requested data service or web service is
undefined or not supported The service provider
returns this error when the request element in Query
or Solicit, or the webMethod element in the Execute
call is not recognized.

E_AccessDenied The operation could not be performed due to
insufficient privileges. The user must be authorized
by the node administrator or dataflow administrator in
order to access the service.

 13

Error Code Description
E_InvalidToken The security token is invalid or not issued by a trusted

security provider
E_TokenExpired The security token has expired. A security token has a

lifespan, and it must be used within the time period.
E_FileNotFound The requested file could not be located.
E_ValidationFailed XML schema or schematron validation error. This

could occur when validation of request message or
payload failed.

E_ServerBusy The service is too busy to handle the request at this
time, please try later.

E_RowIdOutofRange The RowId parameter is out of range, it must be in the
range between 0 and maxRows returned from the
service provider

E_FeatureUnsupported The requested feature is not supported.
E_VersionMismatch The request is a different version of the technical

specification. This occurs when the namespace of the
request message does not match the service
provider’s.

E_InvalidFileName The name element in the nodeDocument structure is
invalid.

E_InvalidFileType The type element in the nodeDocument structure is
invalid or not supported.

E_InvalidDataFlow The dataflow element in a request message is not
recognized or supported It is usually an indication of
incorrect dataflow name.

E_InvalidParameter One of the input parameters is invalid. The service
provider should indicate the offending parameter
name in the fault details.

E_AuthMethod The authentication method is not supported.
E_Unknown An unknown or undefined error has occurred. The

error code might be used to indicate an unexpected
condition, however the fault detail should contain
additional information or a description of nature of the
error.

E_QueryReturnSetTooBig The result set specified is too large to return
asynchronously The caller should set the maxRows to
a smaller number, or use the Solicit method instead.

E_DBMSError An internal database error occurred which prevents
processing the request. This is typically a server fault.

 14

Error Code Description
E_RecipientNotSupported The recipient functionality is not supported. Although

the error code is defined here, it is highly
recommended a node support the recipient feature
whenever possible. It should treat the recipient
parameter as non-critical and proceed even it is not
implemented.

E_NotificationURINotSupported The NotificationURI functionality is not supported.
Usage of this error code should be limited. A node
should use ‘the best effort’ for transaction notification
as needed.

Table 4: Exchange Network Error Codes

In addition to the error codes listed above, service providers may return the native
database management system (DBMS) error code if a database operation fails.
The description element in fault detail is a human readable string description of the
error. The value of this element should be a detailed description of the specific nature or
cause of the error.
An example SOAP message with NodeFaultDetail:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="
http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <Code>SOAP-ENV:Sender</Code>
 <Reason>Invalid User</Reason>
 <Detail>
 <NodeFaultDetail
xmlns="http://www.exchangenetwork.net/schema/node/2">
 <ErrorCode>
 E_UnknownUser</ ErrorCode >
 <Description>
 Authentication failed; please check your userId and password.
 </Description>
 </NodeFaultDetail></Detail>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

The message indicates that the failure is due to an invalid user name or password.
Note that the default namespace for fault detail is:

http://www.exchangenetwork.net/schema/node/2
representing the XML namespace of this specification.

3.9 NotificationURI Type
The version 2.1 WSDL specifies the structure for a NotificationURI type. This type is
used to specify a NotificationURI for the Solicit and Submit. This type includes a

 15

structure of specific events, the NotificationTypeCode, which can be used to control
when the notification address should be messaged.
The NotificationURIType is defined as follows:
 <complexType name="NotificationURIType">
 <simpleContent>
 <extension base="xsd:string">
 <attribute name="notificationType"
type="typens:NotificationTypeCode" use ="optional"/>
 </extension>
 </simpleContent>
 </complexType>

NotificationURI should contain one, and only one URI.

 16

4 Network Service Interfaces
Network services defined in this specification are classified into four (4) major abstract
interfaces:

Interface Methods Description
Data Submission Submit, Notify,

Download
A group of methods for sending arbitrary
documents to a service provider and retrieving
the results.

Data Publishing Query, Solicit,
Download

A set of methods for information retrieval from
a service provider. The interface provides a
framework for performing database queries.

Service
Invocation

Execute,
Download

A set of methods for offering services other
than data services. This is a generic extension
framework for adding extra services without
redesigning and implementing a web service
layer.

Administration NodePing,
GetServices,
GetStatus

Methods for network-wide coordination and
management.

Table 5: Network Service Interface Models

Figure 1 shows a static Unified Modeling Language (UML) diagram of interfaces in a
network node.

+Submit()
+GetStatus()
+Notify()

«interface»
Data Submission +Query()

+Solicit()
+Download()

«interface»
Data Publishing Interface

+Execute()
+Download()

«interface»
Sevice Invocation

Network Node Services v2.x

+Node1

+Data Submission1

1

-Data Publishing1

1

-Service Invocation1

Data Submission

Data Publishing
Service

Invocation

+Ping()
+GetServices()
+GetStatus()

«interface»
Admin

1

-Admin1

Figure 1: Static UML Diagram for Network Node Services

 17

5 Message Encoding and MTOM Attachment
SOAP Message Transmission Optimization Mechanism (MTOM) is a W3C standard
that defines a way of sending arbitrary binary data as an attachment without base64
encoding. Relying on XML Optimized Packaging (XOP), binary content is transmitted as
it is on the wire using a very popular MIME multipart/related serialization of SOAP
message parts.
In this encoding style, the SOAP message is transmitted as the first MIME part, followed
by one or more attachments, referenced from the SOAP message body. Although
MTOM supports attachments, the serialized message may contain only the SOAP
message body, with no attachment at all.
In version 2.0 of the Node Functional Specification, MTOM encoding was only required
for those web methods that need attachment support, while plain text encoding was
used for all other methods. The mixed encodings of Text and MTOM have proven to be
difficult in implementations and prone to interoperability issues among different toolkits.
This section discusses a set of requirements in message encoding that ease
implementation and maximize interoperability between node clients and service
providers.

5.1 Node Server MTOM Behaviors
In some very popular implementations of web service standards, MTOM encoding
is either all or nothing by default. In other words, MTOM (in the same endpoint) is
applied to all methods during the process of encoding response messages (if
enabled) or some custom encoder has to be implemented to deal with mixed
encodings.
To reduce implementation difficulties and align with industry support, all nodes
MUST apply MTOM encoding to all response messages defined hereafter in this
specification, regardless of the existence of attachments. The behavior applies to
SOAP Fault messages as well.
A Node SHOULD accept and process messages that are not MTOM encoded in
an effort to tolerate various implementations of node clients and maximize
interoperability.
In many situations, XOP will not be applied during the MTOM encoding since it
only applies to attachments of base64Binary type (only utilized in the
NodeDocumentType in this document). Therefore, the SOAP message body is the
only MIME part in such situations.
Note that even if there is an attachment, its contents may not be extracted by XOP
as a separate MIME part, but rather sent as embedded base64Binary inside the
SOAP message. This is due to the fact that XOP may only be triggered when the
size of an attachment is greater than a threshold (e.g.2kb)

 18

5.2 Node Client MTOM Behaviors
A node client is the consumer of node services, and the initiator of service
requests. All node clients conforming to this specification MUST send MTOM
encoded request messages, regardless of whether an attachment exists. This is,
in fact, the default behavior of many toolkits.
A node client SHOULD handle both plain text or MTOM encoded response
messages. The response tolerance allows a client to work with many v2.0 and
v2.1 nodes. Our study indicates that this is also the default behavior in both .NET
3.0+ and Java implementations. The encoding style of a response message is
largely transparent on the application level.

 19

6 Interoperability Considerations

6.1 SOAPAction
SOAPAction is an HTTP header required by the SOAP 1.1 specification. It has been
deprecated by the standard body in the SOAP 1.2 specification. However, there are still
three variances of SOAPAction in some implementations that cause interoperability
issues among Network Nodes:

1. SOAPAction in the HTTP Header
2. action in the Content-Type header as part of the media type.
3. wsa:action in the WS-Addressing header.

To simplify implementations and maximize interoperability, the following requirements
are provided in this specification:

• Client applications MUST either include an empty value for SOAPAction in the
HTTP header or not send SOAPAction at all.

• Node implementations MUST NOT require the presence of SOAPAction, action
or wsa:Action nor use them as a dispatch mechanism. However, a node
SHOULD tolerate the presence of SOAPAction and continue to process the
request whenever possible.

6.2 Handling of WS-* and Other Web Service Standards
There are many web service standards and implementations that are defined and
supported by various standards bodies. These include standards such as WS-
Addressing and WS-Reliability and are often collectively referred to as WS-* standards,
The WS-* standards can complement, overlap, and compete with each other. As such,
the Exchange Network adopts the following principles with regard to the use of the WS-*
standards:

• Minimal Dependency: The Exchange Network should be based on a minimal set
of stable standard technologies that provide the most value. The minimal
dependency strategy allows us to build fully functioning nodes without incurring
the additional development/testing cost of supporting other specifications. It also
reduces potential interoperability issues associated with various implementations
of these standards across different platforms.

• Maximum Flexibility: Being neutral does not infer that these technologies are not
to be used or supported. Exchange partners can make private arrangements for
supporting these standards such as WS-Addressing, WS-Reliability or other WS-
* standards as needed. The maximum flexibility strategy allows any node to
electively support a WS-* standard within the EN framework in the future.

The following rules apply to the use of the WS-* standards on the Exchange Network:

• Clients SHOULD NOT send WS-* standards in a request, unless the
receiving Node is known to support one or more of these optional
standards.

 20

• Nodes MAY support the WS-* standards, but their use MUST be marked as
optional for requesters.

 21

7 Node Web Methods

The following section describes the behavior and interfaces of the Exchange Network
service provider. One of the design goals of this document is to create a framework of
web services such that data exchanges of any type between nodes can be conducted
seamlessly and automatically. The web interface layer of the framework will create fully
programmable environments on which clients can build automated tools, in any
programming language, to send documents into the network or to track previous
submissions.
A node is a service provider. Thus, the key interfaces that must be implemented in a
node include the following web methods:
• Authenticate
• Submit
• Query
• GetStatus
• Notify
• Solicit
• Download
• NodePing
• GetServices

Optional methods to implement include:
• Execute
This basic set of functions will be applicable for each given type of dataflow that will be
exchanged through the node, considering that each node may be able to handle many
kinds and types of data.
The following subsections define behaviors of each web method, and give detailed
descriptions of inbound/outbound messages.

7.1 Authenticate

7.1.1 Description
The Authenticate method authenticates a user using the supplied credential. It returns a
security token when successful. The security token must be included in all other
method invocations, except NodePing, as a proof of identity.
A security token is an opaque string that is meaningful only to the issuer or trusted
partners. It may include, but is not limited to, the following information:

• The user ID or profile name.

• A session ID for state management.

 22

• A timestamp for aging, expiration.

• Other user properties such as user group or IP address.

Service providers must implement an aging strategy to prevent replay attack. An
expired token should be discarded immediately. A suggested token life span is about
ten (10) minutes.
All messages, including Authenticate, must be sent using the Secure Socket Layer
(SSL) transport mechanism. Note that although SSL is very good in securing
communication channels, its usage as an authentication system is problematic; mutual
verification of certificates in a large-scale distributed system has proven to be very
expensive (public key infrastructure [PKI] required) and difficult to implement. The
security token scheme presented here offers a simple yet effective way of identification
and authentication.
This specification does not define the specific method for authenticating users or
validating credentials. Each node implementer is free to choose any available
authentication process in the underlying operating system, as outlined in the Exchange
Network Protocol document. It is the responsibility of the node operator to choose a
secure authentication process. Although password authentication is widely used in
Network Node 1.1, it is strongly recommended that other, more secure authentication
mechanisms such as key or certificate-based authentication, be supported in the
version 2.1 nodes.
The Network Authentication and Authorization Service (NAAS) provides complete
authentication and authorization services for the Exchange Network. All Exchange
Network Nodes are encouraged to use the NAAS for authorization and authentication
whenever possible.

7.1.2 Definition
Authenticate messages are defined below:
 <element name="Authenticate">
 <complexType>
 <sequence>
 <element name="userId" type="xsd:string"/>
 <element name="credential" type="xsd:string"/>
 <element name="domain" type="xsd:string" nillable="true"/>
 <element name="authenticationMethod" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="AuthenticateResponse">
 <complexType>
 <sequence>
 <element name="securityToken" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>

 23

Where Authenticate is the request message; AuthenticateResponse is the response.
The definition indicates that the Authenticate request message consists of four (4)
arguments: userId, credential, domain, and authenticationMethod, all of type string.
The response message contains a single string variable named securityToken, which
contains the security token.

7.1.3 Arguments
• userId: the user ID of the person or system. It is recommended that an email

address be used as the user ID in the Exchange Network.

• credential: the user’s credential for accessing the network services. It could be
a password, a password digest, or a secure authentication key. The credential
could be an empty string in case of certificate authentication where the
credential, the X.509 certificate, is provided inside the signature.

• domain: this parameter is optional. It is used for supporting multiple user identity
stores or federated identity management systems. The default domain is for
Exchange Network users is default. A node that supports multi-domain
authentication should provide the name of the domain to Exchange Network
Partners if appropriate.

• authenticationMethod: specifies which authentication methods are to be used.
The authenticationMethod parameter could contain one of the following values:

Authentication Method Description

Password The credential parameter contains a password or a secure
authentication key (SAK).

Digest The credential parameter contains a digest (sha1) of the
user’s password.

Certificate The credential parameter is empty, but the message is
signed and a certificate is included in the signature

Token The credential contains a security token issued by a trusted
partner. This usually means that the user has already been
authenticated by another security provider.

Table 6: Authentication Method Descriptions

A network node may elect to support WS-Security for authentication using certificates.
The user must sign the authentication message and insert WS-Security headers in the
SOAP request message. The Network Authentication and Authorization Services
(NAAS) provide centralized authentication services, including WS-Security, available to
all network nodes.

 24

7.1.4 Return
Upon successful authentication, the service provider returns a SOAP message with a
security token that is placed in securityToken. The security token becomes a security
ticket for all subsequent service requests.
The service provider returns a SOAP fault message under the following conditions:

• The user record is unknown.
• The supplied credential is incorrect.
• A server side fault/exception.
The SOAP fault message must contain a detail element with E_UnknownUser as the
error code if the user record could not be found. The error code must be
E_InvalidCredential when the system could not verify the supplied password or digital
certificate.

7.1.5 Example
A typical request message is:
<SOAP-ENV:Envelope xmlns:SOAP-ENV=" http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
 <SOAP-ENV:Body>
 <typens:Authenticate
xmlns:typens="http://www.exchangenetwork.net/schema/node/2">
 <typens:userId>jsmith@example.com</typens:userId>
 <typens:credential>********</typens:credential>
 <typens:domain>galaxy</typens:domain>
 <typens:authenticationMethod>digest</typens:authenticationMethod>
 </typens:Authenticate>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

and a positive response would be:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
…>
<SOAP-ENV:Body>

<typens:AuthenticateResponse xmlns:typens="
http://www.exchangenetwork.net/schema/node/2">

<typens:securityToken>34BjT34ngPRN2345INt</typens:securityToken>
</typens:AuthenticateResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

where 34BjT34ngPRN2345INt is the security token. The security token, in its encrypted
form, is meaningless to the holder, but contains crucial information to the issuer.

 25

7.2 Submit

7.2.1 Description
The Submit method provides a generic way of sending one or more payloads to a
service provider. A payload is encoded as the document content (see definition of
NodeDocumentType in section 3.3), and must be transmitted as an MTOM attachment.
A dataflow is a logical collection of certain kinds of documents, understandable to the
sender and the ultimate receiver. Therefore, a dataflow can also be understood as a
tag indicating ultimate receiver of the payload. A dataflow can carry other information
as well, such as network events or asynchronous database requests. Such dataflows
will be identified by special URLs. A Submit message should contain information for
only one (1) dataflow at a time.
A new parameter, recipient, is introduced in this specification to support point-to-point
secure data exchanges. A user can submit a document to another user by specifying
the recipient’s email address or node endpoint URI.
Network nodes are required to process the SOAP main body of request messages, but
are not required to understand the contents of attachments unless the node is the target
node (ultimate receiver). For instance, a missing telephone number in a submitted
document is not a SOAP error, but rather a process related error that should be dealt
with differently.

7.2.2 Definition

 <element name="Submit">
 <complexType>
 <sequence>
 <element name="securityToken" type="xsd:string"/>
 <element name="transactionId" type="xsd:string"/>
 <element name="dataflow" type="xsd:NCName"/>
 <element name="flowOperation" type="xsd:string" />
 <element name="recipient" type="xsd:string" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="notificationURI" type="typens:NotificationURIType"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="documents" type="typens:NodeDocumentType"
minOccurs="1" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="SubmitResponse" type="typens:StatusResponseType"/>

7.2.3 Arguments
The Submit method accepts six (6) top-level arguments:

• securityToken: A security ticket issued by the service provider or a trusted service
provider.

 26

• transactionId: A transaction ID for the submission if the operation is a result of an
asynchronous operation or a previous transaction (process report from a backend
processor, for instance). All Exchange Network transaction IDs must begin with an
underscore (‘_’) character.

• dataflow: The name of target dataflow. A dataflow identifier may contain sub-
dataflow name if needed. The format of the dataflow with sub-dataflow should be:
 dataflow.sub-dataflow
For example, a sub-dataflow Handler in the RCRA dataflow could be represented
as:
 RCRA_v1_0.Handler

• flowOperation: A flow specific operation identifier. It indicates the specific
processing for the document, as defined in the Data Exchange Flow Configuration
Document (FCD).

• recipient1: An array of zero or more URIs representing the ultimate receivers of the
submission. Each recipient item in the array should contain one node address URI
or one email address URI. If recipient is a Node URI, the processed2 submission
package must be sent to the recipient Node using the Submit method. Specific
details on how the Submit request to the recipient should be constructed is
determined by dataflows and documented in the relevant Flow Configuration
Document. If the recipient parameter contains a valid email URI, then the receiving
Node must send an email containing at minimum: the transactionID of the
submission, the receiving Node address, and the originating Node address.
Additional details may be included, but are determined by dataflows and specified in
the relevant Flow Configuration Document. This information must allow a properly
authorized person to download the submission documents after receiving a valid
transactionID via email.

• notificationURI: An array of zero or more URIs to which a status notification
containing the processing status of a submission can be sent when the status of the
transaction changes. The notificationURI parameter must contain either a valid
email URI or a valid node address. An optional notificationType attribute may be
specified to indicate the situations in which a notification message must be sent to
the specified URI. If no notificationType attribute is specified, all messages relating
to the transaction must be sent.
If the value of this parameter is an email URI, the processing Node must attempt to
send an email message which contains the ID, statusCode, and statusDetail of the
transaction. If the value of this parameter is a Node URI, the Notify method will be

1 More detail about specific use cases and functionality of the ‘recipient’ parameter can be found in the Recipient
Guidance and Best-practices document.
2 Node processing is determined by the dataflow specified in the ‘dataflow’ parameter and the ‘flowOperation’
parameter. Depending on how the service is defined in the Flow Configuration Document, processing may or may
not alter the contents of the submission package.

 27

called on the URI, including the transaction ID and the transaction status
information.

• documents: One or more documents of type NodeDocumentType as described in
section 3.3. Each document structure contains a single payload.

7.2.4 Return
The Submit method returns, when successful, a transaction ID, a transaction status
code, and a description of the status. A major difference between the version 2.1 and
the version 1.1 specification is the addition of transactionStatus to the return. This
allows the option for synchronous transaction status messaging when the transaction is
processed immediately. (e.g. the payload is relatively small and an informative
transaction status can be returned immediately). However, nodes are required to return
a transaction status regardless of whether the request is processed synchronously or
asychronously. Nodes should simply return a status of Received if subsequent
processing status information is not available immediately.
Whether or not a submission is processed immediately or at a later time, a transaction
ID must be returned. It can be used to query status of the submission (see GetStatus
method) later.
If the securityToken is invalid, insufficient, or expired, a node must return a SOAP fault
message of type NodeFaultDetailType as described in section 3.8 with one of the
following three error codes: E_InvalidToken, E_AccessDenied, or E_TokenExpired.
If the recipient parameter is unsupported, a SOAP fault message with an error code of
E_RecipientNotSupported must be returned. Likewise, if the NotificationURI
parameter is unsupported, an error of E_NotificationURINotSupported must be
returned. If both parameters are unsupported, an error of E_FeatureUnsupported must
be returned.
The service provider must return a SOAP fault message (Client Fault) if one of the
payloads in the message could not be processed. The NodeFaultDetail element should
contain additional error information.

7.2.5 Example
The following example shows a request message with one (1) referenced attachment.
The payload is targeted to a dataflow called NEI.
<?xml version="1.0" encoding="utf-8" standalone="no" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
 <SOAP-ENV:Body>
 <typens:Submit
xmlns:typens="http://www.exchangenetwork.net/schema/node/2">
 <typens:securityToken>csm:ZTyVjameqhpXZip0KFKwEfO57RKdQA,,.
</typens:securityToken>

 28

 <typens:transactionId>uuid:_9w0BAQUFADBDMQswCQYDVQQGEw
</typens:transactionId>
 <typens:dataflow>NEI_v3_0.Point</typens:dataflow>
 <typens:documents DocumentId="f654c35c-f223-4787-a947-8787f532d3fe">
 <typens:DocumentName>NEI_DC_2005</typens:DocumentName>
 <typens:DocumentType>XML</typens:DocumentType>
 <typens:DocumentContent xmime:contentType=’text/xml’>
MIICvTCCAiagAwIBAgIBZTANBgkqhkiG9w0BAQUFADBDMQswCQYDVQQGEwJJRTEP
MA0GA1UECBMGRHVibGluMSMwIQYDVQQDExpSU0EgVGVzdCBDQSAtIE5vIExpYWJp
bGl0eTAeFw0wNDAzMDIwMTIxNDZaFw0wNTAzMDIwMTIxN

 </typens:DocumentContent>
 </typens:documents>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Note that the document content is base64 encoded in the sample request message. All
payloads, regardless of encoding type, must be sent using the MTOM attachment
mechanism.

7.3 Download

7.3.1 Description
The Download method provides a means for retrieving documents associated with a
transaction from a Node. In a typical asynchronous transaction, such as those
associated with Solicit or Submit, the Download method is used to obtain results from a
service request.
The ability to download documents makes mutual data exchanges possible. Any node
in the Exchange Network can be a service provider and, at the same time, a service
consumer. From the requestor’s point of view, submitting is an operation of sending
documents to a remote node, while downloading is an operation of receiving documents
from a remote node.
Unlike the Submit method, however, the Download method gives the requester access
to documents. Generally, the Download method should only be available to users who
have been given explicit permissions to invoke the service. Additionally, documents
available through the Download method should have user and group level permissions
that allow for granular security.

7.3.2 Definition
The request message:
 <element name="Download">
 <complexType>
 <sequence>
 <element name="securityToken" type="xsd:string"/>
 <element name="dataflow" type="xsd:NCName"/>
 <element name="transactionId" type="xsd:string"/>
 <element name="documents" type="typens:NodeDocumentType"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>

 29

 </complexType>
 </element>
 <element name="DownloadResponse">
 <complexType>
 <sequence>
 <element name="documents" type="typens:NodeDocumentType"
minOccurs="1" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>

7.3.3 Arguments
The Download method takes the following parameters:

• securityToken: A security ticket issued by the service provider or a trusted
security provider.

• dataflow: The dataflow identifier for the download operation.
• transactionId: A transaction ID for the submission. It must be the same

transaction ID issued by the node (See the Notify method.)
• documents: An array of NodeDocumentType structures as described in section

3.3. This structure is used to specify what documents to download, using the
DocumentName and documented attributes. The DocumentContents element
must be empty in the request message, and should be ignored by service
providers.

When the documents parameter is empty, the Node must return all documents
associated with the supplied transactionId. When a document name is specified within
the documents parameter, the node must return only the associated document.
For any valid transaction ID, the following predefined DocumentName attributes can be
used to retrieve transaction reports, original documents, or some processed documents
associated with the transaction. Nodes must have the capability to generate these four
types of documents for all Data Exchanges. However if the specified DocumentName
cannot be found, or does not exist for the transaction ID, the E_FileNotFound error must
be returned. The specific content and formatting of each document is determined by
each Data Exchange and should be documented in the relevant Flow Configuration
Document.

DocumentName Description

Node20.Report Processing report if the transaction
succeeded. These reports are flow
specific and are defined in the relevant
Flow Configuration Document.

Node20.Error Error report if the transaction failed.

Node20.Orignal The original document submitted by the
user. The documentId attribute defines the

 30

specific document if there are multiple
documents in the submission. All
documents must be returned if no
document Id is specified.

Node20.Processed A processed document or a copy of record
for the submitter.

Table 7: DocumentName Descriptions

7.3.4 Return
The response message contains an array of zero or more NodeDocumentType
structures if successful. Documents composed of binary data must be transmitted as
MTOM processed attachments with attachment type identifiers.

7.3.5 Examples
The sample message below shows a Download request for a report associated with the
transaction 433612a7-83d3-4d2b-b3b4-05e3813d54bb:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime" >
 <SOAP-ENV:Body>
 <typens:Download
xmlns:typens="http://www.exchangenetwork.net/schema/node/2">
 <typens:securityToken>csm:3F4T322VxuPs23QrWspmR</typens:securityToken>
 <typens:transactionId>433612a7-83d3-4d2b-b3b4-
05e3813d54bb</typens:transactionId>
 <typens:documents>
 <typens:documentName>Node20.Report</typens:documentName>
 <typens:documentType>XML</typens:documentType>
 <typens:documentContent />
 </typens:documents>
 </typens:Download>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The following request asks for all original documents associated with the transaction
433612a7-83d3-4d2b-b3b4-05e3813d54bb
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime" >
 <SOAP-ENV:Body>
 <typens:Download
xmlns:typens="http://www.exchangenetwork.net/schema/node/2">
 <typens:securityToken>csm:3F4T322VxuPs23QrWspmR</typens:securityToken>
 <typens:transactionId>433612a7-83d3-4d2b-b3b4-
05e3813d54bb</typens:transactionId>

 31

 </typens:Download>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

7.4 Query

7.4.1 Description
The Query method is a function in the Data Publishing interface. The method is
intended to run one of a series of predefined information requests that return data in an
XML instance document that conforms to a predefined standard schema. Many
predefined information requests will be standard across the network, and some may be
unique to a particular node.
Another case where positioned-fetch must be important is when the result set is so
large that the network connection between the requester and the provider will likely
timeout. Positioned-fetch allows requesters to partition the whole result set into smaller
chunks and thus avoid possible network problems. Nodes are encouraged to support
positioned-fetches (paged queries); however, due to varying system capabilities, some
nodes may not be able to support this functionality. If a node cannot support positioned
fetches, it must return a SOAP fault with an error code of E_FeatureUnsupported when
rowId is greater than 0.
One of the new features introduced in the version 2.1 Query method is the dataflow
parameter, which provides additional semantics to the data services requests and
further limits possible data service name collisions.
Another change in the node 2.1 Query method is that query parameters are defined as
elements with Name, Type, and Encoding attribute. This allows service providers to
perform parameter binding without ambiguities. However, it should be noted that
parameters with encoding types other than type string and XML may not be supported
in all nodes, and thus should not be used for core business processes unless a Trading
Partner Agreement (TPA) is established.
The successful response message contains a ResultSetType structure, which not only
contains the actual result XML document, but also the description of the result set.

7.4.2 Definition
The Query messages are defined by the following WSDL segments:
 <element name="Query">
 <complexType>
 <sequence>
 <element name="securityToken" type="xsd:string"/>
 <element name="dataflow" type="xsd:NCName" />
 <element name="request" type="xsd:string" />
 <element name="rowId" type="xsd:integer"/>
 <element name="maxRows" type="xsd:integer"/>
 <element name="parameters" type="typens:ParameterType"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 32

 </element>
 <element name="QueryResponse" type="typens:ResultSetType"/>

7.4.3 Arguments
The Query method requires the following arguments:

• securityToken: A security ticket issued by the service provider or a trusted
security provider.

• dataflow: The name of the dataflow.
• request: The database query to be processed. This should be defined for each

data exchange and listed in the corresponding Flow Configuration Document
(FCD).

• rowId: The starting row for the result set - it is a zero based index to the current
result set. The value of rowId must be 0 if paging is not requested.

• maxRows: The maximum number of rows to be returned. Valid values are any
number greater than 0, and -1. If maxRows is -1, the service provider must return
the entire result set (and indicates that paging is not requested). If the request
maxRow parameter is too large, or the maxRows parameter is -1, the node does
not support paging, and the result set is too large to process synchronously, a
SOAP fault message with an error code of E_QueryReturnSetTooBig must be
returned. A node may return fewer results if the complete result set is smaller than
the value specified in maxRows. The rowCount element in the response
represents the actual number of records returned under such situations.

• parameters: An array of zero or more ParameterType structures (see section 3.6)
for the information request. Note that Nodes are only required to support
parameters of encoding type String and XML. All other encoding types are
optional, and it is the responsibility of the requestor to verify that other parameter
encoding types are supported by the receiving Node.

7.4.4 Return
The Query method returns a result set as the ResultSetType (See section 3.4) if
successful. It must return a SOAP fault message when it fails. The fault detail element
may contain an error code and/or an error description from the native database system.
The service provider must return a SOAP fault message of type NodeFaultDetailType
(see section 3.10) with an error code type of E_RowIdOutofRange if the rowId is out of
range of the whole result set. The service provider must return a SOAP fault message
with an error code type of E_InvalidParameter if one of the parameters has an invalid
type or encoding, or if a specified encoding is unsupported. The service provider must
return a SOAP fault message with an error code type of E_QueryReturnSetTooBig if the
requested result set is too large to process or return. In this case, the service consumer
should retry the query as a Solicit request.
Note that an empty result set is not an error. The service provider must return a positive
response with 0 records.

 33

7.4.5 Example
Suppose exchange partners agree to honor a query request named GetFacByZipcode,
which might correspond to the SQL statement in a stored procedure,

select * from FACILITY where zipcode = _zipcode

In which _zipcode is a parameter, the request message would be:
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
 <SOAP-ENV:Body>
 <typens:Query
xmlns:typens="http://www.exchangenetwork.net/schema/node/2">

<typens:securityToken>csm:PPFDNFDFDFDSAFA1fdsafnP</typens:securityToken>
 <typens:dataflow>FRS_v20</typens:dataflow>
 <typens:request>GetFacilityByZipcode</typens:request>
 <typens:rowId>0</typens:rowId>
 <typens:maxRows>100</typens:maxRows>
 <parameter name="StateZipCode">20001</parameter>
 </typens:Query>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

When there are multiple parameters it is the service provider’s responsibility to bind
them based on names, rather than position.

7.5 Solicit

7.5.1 Description
The Solicit method performs the requested operation in the background or sometimes
offline. It is designed especially for queries that may take a long time.
The Solicit method is most often used to request a Query operation that may be too
large to process immediately. However, the service provider may begin the Query
operation immediately when the request is received, thus avoiding management of a
transaction queue, or wait until a later time. It may spawn a separate thread to process
the request in a relatively low priority mode, or save the request in a transaction queue,
that will be processed sequentially sometime later. However, it must return a
transaction ID immediately to the requester, thereby acknowledging the acceptance of
the transaction.
The service provider must return a SOAP fault message if the requested operation
could not be processed.
Once the requested operation is processed successfully, the service provider should
update the status of the transaction to Completed. If the operation failed, the status of
the transaction should be set to Failed.

 34

The requester may optionally ask the service provider to submit the result to a network
node location by specifying a recipient. The location must contain a network node
address that has an implementation of the Submit method. It is the requester’s
responsibility to check the transaction status and download the result if the recipient
parameter is empty.

7.5.2 Definition
The Solicit messages are defined by the following WSDL segments:
 <element name="Solicit">
 <complexType>
 <sequence>
 <element name="securityToken" type="xsd:string"/>
 <element name="dataflow" type="xsd:NCName" />
 <element name="request" type="xsd:string" />
 <element name="recipient" type="xsd:string" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="notificationURI" type="typens:NotificationURIType"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="parameters" type="typens:ParameterType"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="SolicitResponse" type="typens:StatusResponseType"/>

7.5.3 Arguments
The Solicit method requires the following arguments:

• securityToken: A security ticket issued by the service provider or a trusted
security provider.

• dataflow: The name of the dataflow.
• request: The data service to be performed. It is usually the name of a predefined

service request.
• recipient3: An array of zero or more URIs representing the ultimate receivers of

the results. Each recipient item in the array should contain one node addressURI
or one email address URI. If ‘recipient’ is a Node URI, the processed result set
must be sent to the recipient Node using the Submit method. Specific details on
how the Submit request to the recipient should be constructed is determined by
dataflows and documented in the relevant Flow Configuration Document.
If the recipient parameter contains a valid email URI, then the receiving Node
must send an email that must contain: the transactionID of the process, the
receiving Node address, and the originating Node address. Additional details may
be included, but are determined by dataflows and specified in the relevant Flow

3 More detail about specific use cases and functionality of the ‘recipient’ parameter can be found in the Recipient
Guidance and Best-practices document.

 35

Configuration Document. This information must allow a properly authorized person
to download the generated result set after receiving a valid transactionID via email.

• notificationURI: An array of zero or more URIs to which a status notification
containing the processing status of the transaction can be sent when the status of
the transaction changes. The notificationURI parameter must contain either a
valid email URI or a valid node address. An optional notificationType attribute
may be specified to indicate the situations in which a notification message must be
sent to the specified URI. If no notificationType attribute is specified, all
messages relating to the transaction must be sent.
If the value of this parameter is an email URI, the processing Node must attempt to
send an email message which contains the ID, statusCode and statusDetail of
the transaction. If the value of this parameter is a Node URI, the Notify method will
be called on the URI, including the transaction ID and the transaction status
information.

• parameters: An array of zero or more ParameterType structures (see section 3.6)
for the information request. Note that Nodes are only required to support
parameters of encoding type String and XML. All other encoding types are
optional, and it is the responsibility of the requestor to verify that other parameter
encoding types are supported by the receiving Node.

7.5.4 Return
The method returns a StatusResponseType (see section 3.5) structure which contains
the transaction ID and the current status details.
If the recipient parameter is unsupported, a SOAP fault message with an error code of
E_RecipientNotSupported must be returned. Likewise, if the NotificationURI
parameter is unsupported, an error of E_NotificationURINotSupported must be
returned. If both parameters are unsupported, an error of E_FeatureUnsupported must
be returned.

7.5.5 Example
The following is a Solicit request for facility list within zip code 20001:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:typens="http://www.exchangenetwork.net/schema/node/2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <typens:Solicit
xmlns:typens="http://www.exchangenetwork.net/schema/node/2">
 <typens:securityToken> csm:3F4T322VxuPs23QrWspmR
</typens:securityToken>
 <typens:dataflow>FRS</typens:dataflow>
 <typens:recipients>jsmith@example.com</typens:recipients>

 36

<typens:notificationURI>https://cdxnode.epacdxnode.net/node/2</typens:notific
ationURI>
 <typens:request>GetFacilityByZipcode</typens:request>
 <typens:parameters Name="USPSZipcode">20001</typens:parameters>
 </typens:Solicit>
 </SOAP-ENV:Body> </SOAP-ENV:Envelope>

Note that the requester asked the service provider to send a notification message to a
node at https://cdxnode.epacdxnode.net/node/2 at the time when the results are
ready or when the request failed. It is the requestor’s responsibility to download the
results from the node.

7.6 Notify

7.6.1 Description
The Notify method has three (3) intended uses: document notification, event notification,
and status notification described as follows:

• Document notification: A node or client notifies a service provider about
availability of some documents (soliciting). The service provider can retrieve the
documents anytime.

• Event notification: A node sends, or possibly broadcasts, an event that is of
interest to other parties. Event messages can be security alerts, shutdown
notices, and other network management notes. This specification does not define
the semantics of events, as they are operation specific. Service providers are
free to state the specific meaning of network events.

• Status notification: A service provider sends a message to a requester to
provide the current status of a submission or service request.

7.6.2 Definition
The request and response are defined by the following WSDL messages:
 <element name="Notify">
 <complexType>
 <sequence>
 <element name="securityToken" type="xsd:string"/>
 <element name="nodeAddress" type="xsd:string"/>
 <element name="dataflow" type="xsd:NCName"/>
 <element name="messages" type="typens:NotificationMessageType"
minOccurs="1" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="NotifyResponse" type="typens:StatusResponseType"/>

7.6.3 Arguments
The request message has the following arguments:

 37

• securityToken: A security ticket issued by the service provider or a trusted
security provider.

• nodeAddress: For document notification, the parameter contains a network node
address where the document can be downloaded. It should contain the initiator's
node address, or be empty if not applicable, for event and status notifications.

• dataflow: The target dataflow that identifies the notification messages.
• messages: An array of notification messages. All messages contained in a single

Notify message must originate from the same dataflow. Please see the definition
of NotificationMessageType in Section 3.7 for details.

7.6.4 Return
The returned XML structure, if processed successfully, is of the ResponseStatusType
which contains a transaction ID, a status code, and a string description of the status for
the notification.
The returned transactionId in the response should be the same transaction ID in the
request message if supplied by the caller.

7.6.5 Examples
The example below shows a document notification. In this case, one (1) file is available
for the service provider to retrieve later.
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime" >
 <SOAP-ENV:Body>
 <typens:Notify
xmlns:typens="http://www.exchangenetwork.net/schema/node/2">

<typens:securityToken>
csm:3F4T322VxuPs23QrWspmR

</typens:securityToken>
<typens:nodeAddress>

https://cdx.epacdxnode.net/services/v20
</typens:nodeAddress>

 <typens:dataflow>FRS</typens:dataflow>
 <typens:messages ObjectId="_307c5169-80b1-4231-a3ae-9dc6ed70d4f1">
 <typens:messageCategory>Document</typens:messageCategory>
 <typens:messageName>RefreshData</typens:messageName>
 <typens:status>Completed</typens:status>
 <typens:statusDetail>A FRS document for loading is ready for
download.</typens:statusDetail>
 </typens:messages>
 </typens:Notify>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Note that the ObjectId in the notification message is the unique document ID for
retrieving the documents with the Download method.

 38

The following example shows an event message, perhaps to announce the
unavailability of a new data set:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime" >
 <SOAP-ENV:Body>
 <typens:Notify
xmlns:typens="http://www.exchangenetwork.net/schema/node/2">
 <typens:securityToken>

csm:3F4T322VxuPs23QrWspmR
</typens:securityToken>
<typens:nodeAddress>

https://cdx.epacdxnode.net/services/v20
</typens:nodeAddress>
<typens:dataflow>FRS</typens:dataflow>

 <typens:messages ObjectId="_307c5169-80b1-4231-a3ae-9dc6ed70d4f1">
 <typens:messageCategory>Event</typens: messageCategory>
 <typens:messageName>FRS_Delta_Change</typens:messageName>
 <typens:status>Completed</typens:status>
 <typens:statusDetail>The FRS information on this node has been
changed.</typens:statusDetail>
 </typens:messages>
 </typens:Notify>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

This is very useful if the receiver does periodic data collections at a node. The provider
could use this mechanism to send notification messages when the data has been
changed.

The notify method could also be used for transaction status notification. A status
notification message is similar to:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime" >
 <SOAP-ENV:Body>
 <typens:Notify
xmlns:typens="http://www.exchangenetwork.net/schema/node/2">
 <typens:securityToken>

csm:3F4T322VxuPs23QrWspmR
</typens:securityToken>
<typens:nodeAddress>

https://cdx.epacdxnode.net/services/v20
</typens:nodeAddress>
<typens:dataflow>AQS</typens:dataflow>

 <typens:messages ObjectId="_307c5169-80b1-4231-a3ae-9dc6ed70d4f1">
 <typens: messageCategory>Transaction</typens: messageCategory>
 <typens:messageName>AQS Transaction</typens:messageName>
 <typens:status>Completed</typens:status>
 <typens:statusDetail>An AQS transaction has been processed
successfully.</typens:statusDetail>

 39

 </typens:messages>
 </typens:Notify>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

It indicates that a transaction with ID _307c5169-80b1-4231-a3ae-9dc6ed70d4f1 has
been finished successfully. In a multi-tier architecture where a node delegates to
backend processor for document processing, this is an important mechanism for the
backend system to notify the Node of status of the transaction. The DocumentContent
element may contain an error report if the transaction failed.

7.7 Execute

7.7.1 Description
Node 2.1 has re-defined the Execute method. Execute method implementation is
optional for Nodes. The Execute has been redesigned as a generic web service
extension mechanism that allows a node to offer additional services. It can be used to
extend a Network Node in the following ways:

• Interface to new services: Any new service that could not be offered through
other node methods, such as Query or Submit, can be offered through the
Execute method.

• Gateway to legacy applications: The Execute method can be used as the web
service layer, or wrapper, for many internal applications, thus turning these
legacy applications into web services. The Execute method essentially provides
a web service wrapper to legacy applications in this scenario.

• Proxy to other web services: A node could use Execute as the proxy to
external web services. It translates and forwards requests to other remote web
services providers for processing. The key benefit of such services is that all
node client applications can access a wide range of web services without
incurring WS client development costs. The generic invocation capability is
based on the facts that almost all programming interfaces can be mapped to
function names and a list of parameters. In other words, they can all be modeled
as standard procedure calls. The Execute method offers a mechanism to reach
such programmable service components. Services offered through the Execute
method must be broadly grouped into interfaces (for example, a set of outside
web services described in a WSDL). An interface is composed of methods,
which must be mapped to a single, component service. An appropriate analogy
would be to the Dataflow/Operation paradigm used by Exchange Network Data
Exchanges.

One of the main advantages of the generic web service invocation mechanism is that it
encapsulates the complexity of the internal business logic and provides a consistent
interface to consumers. When a new service is published through the Execute method,
there should be no changes or programming requirements on the client side as long as
the client “knows” how to call the Execute method. On the other hand, the generic

 40

mechanism introduces new challenges to consumers. They will need to discover what
web methods are available and how to bind the parameters at run-time. The GetService
method (See section 7.9) provides this information dynamically.
For nodes using NAAS as the authorization service, access control policies can be
applied to Execute similar to the Query method. The interfaceName should be treated
as the dataflow name and the methodName mapped to the requestName in the policy
settings.

7.7.2 Definition
The Execute messages are defined by the following XML Schema.
 <element name="Execute">
 <complexType>
 <sequence>
 <element name="securityToken" type="xsd:string"/>
 <element name="interfaceName" type="xsd:string"/>
 <element name="methodName" type="xsd:string" />
 <element name="parameters" type="typens:ParameterType"
minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="ExecuteResponse">
 <complexType>
 <sequence>
 <element name="transactionId" type="xsd:string" />
 <element name="status" type="typens:TransactionStatusCode" />
 <element name="results" type="typens:GenericXmlType"/>
 </sequence>
 </complexType>
 </element>

7.7.3 Arguments
The Execute method accepts four (4) arguments:

• securityToken: An authentication ticket issued by the service provider or a trusted
security provider.

• interfaceName: The name of the internal interface. This value is similar in
concept to the dataflow parameter in Submit or Query, and should be used to
indicate the desired functionality.

• methodName: The name of the method to be invoked within the interface.

• parameters: An array of zero or more ParameterType structures (see section 3.6)
for the service call.

7.7.4 Return
The Execute method returns an XML structure that contains the following information:

 41

• transactionId: An ID for the transaction, whether or not the transaction is
synchronous or asynchronous. The transactionId will be used to query the status
(GetStatus) or download the results for asynchronous transactions.

• status: The current status of the transaction.
results: The processing results for the request in the form of a GenericXMLType (see
section 3.1). It should contain all the information from the ultimate service provider if the
request is processed synchronously.
The node should forward SOAP Fault directly to the caller if the remote web service
provider encountered error conditions.

7.7.5 Example
In the following example, we assume a node wishes to offer a web service that allows
users to subscribe to a data change event, such as service description changes. When
subscribed, the node sends an email message to all subscribers. The Subscribe
service is defined as below:

InterfaceName MethodName Parameters Results

DataChangeEvent Subscribe emailAddress: The
subscriber’s email
address

A string description
of subscription
status.

In order to subscribe to the event, a requester may send a similar message to the
following:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <typens:Execute
xmlns:typens="http://www.exchangenetwork.net/schema/node/2">
 <typens:securityToken>csm:3F4T322VxuPs23QrWspmR</typens:securityToken>
 <typens:interfaceName>DataChangeEvent</typens:interfaceName>
 <typens:methodName>Subscribe</typens:methodName>
 <typens:parameter
name=”emailAddress”>jsmith@example.com</typens:parameter>
 </typens:Execute>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

A successful response message would be:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <typens:Execute
xmlns:typens="http://www.exchangenetwork.net/schema/node/2">

 42

 <typens:transactionId>433612a7-83d3-4d2b-b3b4-
05e3813d54bb</typens:transactionId>
 <typens:status>Completed</typens:status>
 <typens:results>
 <message xmlns="http://example.com/schema/subs/2">
 Thank you for subscribing the data change event. We will send a
message to you when our node configuration changes.
 </message>
 </typens:results>
 </typens:Execute>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

7.8 GetStatus

7.8.1 Description
GetStatus is a method for transaction tracking. Once initiated, a transaction enters into
different processing stages. The GetStatus method offers the client a way of querying
the current state of the transaction. Note that GetStatus is used for querying the status
of both asynchronous and synchronous transactions. A service provider must
persistently store (log) transactional information for the following methods: Submit,
Download, Query, Solicit, Notify and Execute.

7.8.2 Definition
The GetStatus method has simple request and response messages defined below:
 <element name="GetStatus">
 <complexType>
 <sequence>
 <element name="securityToken" type="xsd:string"/>
 <element name="transactionId" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="GetStatusResponse" type="typens:StatusResponseType"/>

7.8.3 Arguments
The GetStatus method requires two (2) mandatory parameters: securityToken and
transactionId. transactionId is a transaction identification returned by the Submit, Solicit
or Notify method.

7.8.4 Return
The GetStatus method returns a StatusResponseType structure (see section 3.5) which
contains status code and a string description of the current status if the operation is
successful. A list of common status codes is defined below:

o Received: The transaction has been received by the Node but has not yet
been processed or scheduled for processing.

 43

o Processing: The transaction is currently being processed.
o Pending: Processing of the documents has not begun, and is either

scheduled to be processed at a later time or is awaiting approval.
o Approved: The submission has been approved or certified if it needs

approval. However, the documents have not been delivered to the
receiver yet.

o Processed: The request/submission has been processed at the node.
However, any payload associated with the transaction has yet to be
delivered to the final recipient, usually a backend process.

o Completed: The transaction has completed, no further action will be taken
on the request/submission.

o Failed: The transaction has failed, no further action will be taken on the
request/submission. The requester should reinitiate the transaction after
the problem is fixed.

o Cancelled: The transaction has been cancelled by the node administrator
or an approver.

o Unknown: The status of the transaction cannot be determined at this time.

All Nodes must return one of the transactions statuses listed above. However, a Node
should provide a mechanism to return additional, flow level, status information in the
StatusDetail field of the StatusResponseType.
The method returns a SOAP Fault with an error code of E_TransactionId if the
transaction ID is invalid; it returns a SOAP Fault with an error code of E_InvalidToken or
E_TokenExpired if the securityToken is invalid or has expired.

7.8.5 Example
A requester may send the following message:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <typens:GetStatus
xmlns:typens="http://www.exchangenetwork.net/schema/node/2">

<typens:securityToken>csm:4TmSris23MSQrRsT3492PPq</typens:securityToken>
 <typens:transactionId>8aa828c3-53a0-41ae-9760-
7d9f54158090</typens:transactionId>
 </typens:GetStatus>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A positive response could be:

 44

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <typens:GetStatusResponse
xmlns:typens="http://www.exchangenetwork.net/schema/node/2">
 <typens:transactionId>8aa828c3-53a0-41ae-9760-
7d9f54158090</typens:transactionId>
 <typens:status>Pending</typens:status>
 <typens:statusDetail>The submission is received and pending for
approval</typens:statusDetail>
 </typens:GetStatusResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

7.9 GetServices

7.9.1 Description
The GetServices method allows requesters to find out the capability of a Node and
discover how the services can be invoked. The type of services (or service categories)
that can be queried includes:

• AllServices: A list of all service categories supported by the GetService method.
• Query: Predefined data services that can be used in the Query method.
• Solicit: Predefined data services that can be used in the Solicit method.
• Execute: Predefined other web services that can be used in the Execute

method.
A node may choose to support additional service description categories (meta-data)
when needed. To get a complete list of all service types, a requester can pass
AllServices as the value of the serviceCategory element. The service provider must
return a list of meta-description categories governed by the following schema definition:
Using GetServices, a requester can determine the capability of a node at runtime and
proceed accordingly. The returned XML document contains detailed meta information
that could be used for runtime binding of parameters. On the other hand, it allows the
service provider to extend the services provided, (e.g., add a new data service), without
changing the infrastructure. The smart invocation and easy extensibility can greatly
enhance the overall usability, stability and capability of the Exchange Network.

7.9.2 Definition
 <element name="GetServices">
 <complexType>
 <sequence>
 <element name="securityToken" type="xsd:string"/>
 <element name="serviceCategory" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="GetServicesResponse" type="typens:GenericXmlType"/>

 45

7.9.3 Arguments
• securityToken: An authentication ticket issued by the service provider or a

trusted security provider.

• serviceCategory: a string, which may be one of the following:
o AllServices: A complete list of all service description categories that can

be used as the value of the element. The possible values are:
o Solicit: Predefined data request definitions supported by the Solicit

method.
o Query: Predefined data request definitions supported by the Query

method.
o Execute: A list of other web services and parameter definition supported

by the Execute method.
Since service providers may elect to provide additional categories of services,
the list of service categories is not limited to the definition above. When
automatically retrieving service definitions, the Exchange Network Discovery
Services (ENDS) will get definitions in all categories using the AllService
parameter value.

7.9.4 Return
The returned message contains an XML document of type GenericXMLType (see
section 3.1) that contains the service and parameter definitions. The XML schema for
the service and parameter description is defined at
http://www.exchangenetwork.net/schema/ENDS/2/GetServices_v2.0.xsd.
If the serviceCategory is Query, Solicit, or Execute, the node must return a list of all
predefined service requests as well as their parameters suitable for being used as the
argument for runtime binding and execution of these methods.

7.9.5 Examples
The request message below gets a list of all service types from a service provider:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <typens:GetServices
xmlns:typens="http://www.exchangenetwork.net/schema/node/2">
 <typens:securityToken> csm:3F4T322VxuPs23QrWspmR</typens:securityToken>
 <typens:serviceCategory>ServiceTypes</typens:serviceCategory>
 </typens:GetServices>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

 46

The requester can call the method, using Query as the value of ServiceType, to obtain a
list of available information requests to be used as the parameter to the Query method.
The following example demonstrates this:
The requester sends,
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <typens:GetServices
xmlns:typens="http://www.exchangenetwork.net/schema/node/2">
 <typens:securityToken>csm:3F4T322VxuPs23QrWspmR</typens:securityToken>
 <typens:serviceCategory>Query</typens:serviceCategory>
 </typens:GetServices>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

7.10 NodePing

7.10.1 Description
The NodePing method is a utility method for determining whether a node is accessible.
A positive response from the node indicates that it is alive and well. A network error (no
response) or SOAP Fault (not ready) means that the service is not available at this time.
NodePing is the only operation that does not require authentication.

7.10.2 Definition
 <element name="NodePing">
 <complexType>
 <sequence>
 <element name="hello" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="NodePingResponse">
 <complexType>
 <sequence>
 <element name="nodeStatus" type="typens:NodeStatusCode"/>
 <element name="statusDetail" type="xsd:string"/>
 </sequence>
 </complexType>

 </element>

Where the NodeStatusCode is an enumerate type defined as:
 <simpleType name="NodeStatusCode">
 <xsd:restriction base="xsd:string">
 <enumeration value="Ready"/>
 <enumeration value="Offline"/>
 <enumeration value="Busy"/>
 <enumeration value="Unknown"/>
 </xsd:restriction>

 47

 </simpleType>

7.10.3 Arguments
The NodePing method has one argument that may contain arbitrary text, preferably
short or even null.

7.10.4 Return
The NodePing method returns a positive response in normal operational mode. It may
return SOAP fault if the service is completely down. The service provider should return
the service status codes in the positive response message.

Status Meaning
Ready The service is up and running.
Busy The service is heavily loaded, it is preferable that the caller send request

later.
Offline Although the node service layer is up, but the backend is offline. All dataflow

related requests will not be processed.
Unknown The service status is unknown. Any other statuses that are not defined falls

into this category.

Table 8: Service Status Codes

A node should also return the node product name and software version number (e.g.
EN-Node v2.4146) in the statusDetail element.

7.10.5 Examples
A NodePing example:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <typens:NodePing
xmlns:typens="http://www.exchangenetwork.net/schema/node/2">
 <typens:Hello>there !</typens:Hello>
 </typens:NodePing>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A positive response from the node may be:
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>

 <typens:NodePingResponse
xmlns:typens="http://www.exchangenetwork.net/schema/node/2">

 <typens:nodeStatus>Offline</typens:nodeStatus>

 48

 <typens:statusDetail>EN-Node v2.4146</typens:statusDetail>

 </typens:NodePingResponse>

 </SOAP-ENV:Body>

 49

8 Service Administration

8.1 Transaction Handling
The following table lists the information that should be tracked by Exchange Network
nodes for each transaction in order to meet the minimum method requirements detailed
in the previous section:

Name Description

Transaction ID A unique ID for a user request. It should
be a UUID.

Method Name The name of the web method that
triggered the transaction.

Request Name The name of data request for Solicit or
Query, it should be the methodName for
Execute.

Dataflow The name of the dataflow.

Parameters A list of parameters associated with the
request.

User Name The requester’s NAAS ID.

ClientIp Clients IP address.

Recipients Ultimate receivers of the documents.

Timestamp The time when the request is received.

Status The transaction status.

ErrorMessage Error message if the transaction failed.

Table 9: Transaction Tracking Minimum Elements

A node must also have the ability to track each document handled internally. The table
below contains the following minimum information a Node should store persistently
about each document.

Name Description

Transaction ID The transaction ID this document is
associated with.

 50

Document ID A unique ID for the document. It should be
a UUID.

Document Name The name of the document as provided by
the requester.

Document Type The type of the document as provided by
the requester.

Content Type The content type in the MTOM attachment.

Status The processing status of the document.

Timestamp Time when the document is received.

Table 10: Document Tracking Minimum Elements

8.2 Logging
All network nodes must log transactions in a persistent storage area that retains the
following information:

• Security Token of the document submitter

• time received

• transaction status
Exchange Network Nodes should provide the capability to track transactions by
transaction ID or the NAAS ID of the document submitter. It is also recommended that
a log that contains detailed processing steps be provided to assist debugging.

 51

Appendix A - References

1. Network Exchange Protocol V1.0, a deliverable to the EPA by CSC, March 14,
2003.

2. Advanced SOAP for Web Development, Dan Livingston, Copyright 2002,
Prentice Hall PTR, Upper Saddle River, NJ, 07458.

3. Web Services Essentials, Ethan Cerami, Copyright 2002, O’Reilly &
Associates, Sebastopol, CA, 95472.

4. Programming Web Services with SOAP, James Snell, Doug Tidwell, Paul
Kulchenko, Copyright 2002, O’Reilly & Associates, Sebastopol, CA, 95472.

5. WS-Security, version 1.0. April 5, 2002.
6. W3C Node "Simple Object Access Protocol (SOAP) 1.1", May 22, 2000. (See

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/).
7. W3C Working Draft "SOAP Version 1.2 Part 1: Messaging Framework", Martin

Gudgin, Marc Hadley, Jean-Jacques Moreau, Henrik Frystyk Nielsen, 26 June
2002 (See http://www.w3.org/TR/2002/WD-soap12-part1-20020626.)

8. W3C Working Draft "SOAP Version 1.2 Part 2: Adjuncts", Martin Gudgin, Marc
Hadley, Jean-Jacques Moreau, Henrik Frystyk Nielsen, 26 June 2002 (See
http://www.w3.org/TR/2002/WD-soap12-part2-20020626.)

9. W3C Recommendation "Namespaces in XML", Tim Bray, Dave Hollander,
Andrew Layman, 14 January 1999. (See http://www.w3.org/TR/1999/REC-xml-
names-19990114/.)

10. W3C Node "SOAP Messages with Attachments", John J. Barton, Satish Thatte,
Henrik Frystyk Nielsen, December 11, 2000.

11. Internet Draft " Direct Internet Message Encapsulation (DIME)”, Henrik Frystyk
Nielsen, Henry Sanders, Russell Butek, Simon Nash, June 17, 2002.

12. W3C Node “Web Services Description Language (WSDL) 1.1”, Erik
Christensen, Francisco Curbera,Greg Meredith, Sanjiva Weerawarana, March
15, 2001 (See http://www.w3.org/TR/wsdl).

13. UDDI Version 3 Specification - http://uddi.org/pubs/uddi-v3.00-published-
20020719.htm, July 19, 2002.

14. W3C Recommendation "SOAP Message Transmission Optimization
Mechanism", Martin Gudgin, Noah Mendelsohn, Mark Nottingham and Herve
Ruellan, 26 January 2005. (See http://www.w3.org/TR/soap12-mtom)

