

Washington State
Department of Ecology

Demonstrated Network Node
Configuration

November 17, 2003
Version: 1.0

Prepared By

4000 Kruse Way Place

Building 2, Suite 160

Lake Oswego, OR 97035

(503) 675-7833

 PAGE I

Table of Contents

EXECUTIVE SUMMARY... 1

INTRODUCTION .. 2

FUNCTIONAL OVERVIEW.. 4

TECHNICAL ARCHITECTURE... 7
Physical Topology.. 7
Logical Architecture... 8
Object Model.. 9
Data Model ... 12

INSTALLATION GUIDE .. 13
System Requirements ... 13
Node Deployment... 14

NODE ADMINISTRATION .. 18
Requirements.. 18
Manage Node Status... 18
Manage Node Accounts ... 19
Manage Node Services ... 20
Manage Node Transactions .. 21
Manage Node Documents .. 22
Node Activity Log.. 23

NODE SECURITY .. 24
Authentication .. 24
Authorization.. 24
Audit (Logging).. 24

ESTABLISHING DATA FLOWS ... 25
Data Flow Integration... 25
Data Flow Development... 25

GLOSSARY ... 29

PAGE II

THIS PAGE INTENTIONALLY LEFT BLANK

 WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

 PAGE 1

Executive Summary
The National Environmental Information Exchange Network (Network) is an innovative approach for the
exchange of environmental data between EPA, States and other partner organizations. The Network will
promote access to and exchange of quality environmental data while reducing reporting burden and
increasing efficiency of data exchanges. The Network is expected to become the preferred method for
routine inter-governmental transfers of environmental data. The goal of the Network is to apply the
Internet-based standards and technologies that have transformed information interchange generally to the
specific needs of organizations engaged in environmental protection.

In order to participate in information exchange through the Network, each partner will establish an entry
point or network node (Node). A Node is a simple environmental information Web service that initiates
requests for information, processes authorized queries, and sends and receives the requested information
in a standardized XML format. A Web service is software that exposes an organization’s application
functionality through the Internet using standards-based technologies that can be accessed by other
entities independently of either party’s technical environment.

This document describes the architecture of the Node developed by the State of Washington Department
of Ecology (Ecology) in partnership with Windsor Solutions, Inc. (Windsor). The Node was
implemented in August 2003, and was the first Node to support a production Facility Registry System
(FRS) data flow with EPA via the Central Data Exchange Node. The Node was built in conformance with
the Network Node Functional Specification Version 1.0 and Network Exchange Protocol Version 1.0.
The Node was recently updated to accommodate the changes detailed by the later Network Node
Functional Specification Version 1.1 and Network Exchange Protocol Version 1.1 documents, and was
successfully deployed and tested with these modifications installed.

The Ecology Node utilizes Microsoft’s .NET technology and provides a robust and cost-effective Node
implementation. It has been designed and built to work without any modification, in a Microsoft server
environment, using SQL Server as the RDBMS. However, the Node’s component-based architecture
also allows for platform flexibility, and this Node is currently being customized for use against an Oracle
9i RDBMS for the Kansas Department of Health and Environment.

Implementation of the Node was designed to be as simple as possible, with the intention that additional
Network partners should be able to implement a similar configuration with only minimal effort. The key
implementation steps are:

1. Establish Node deployment environment

2. Create and Configure the Node Database

3. Configure the Node Database Account

4. Deploy the Node Executable

5. Configure the Node Application

This document describes the Ecology Node configuration and includes an implementation guide that can
be used by a Network partner as the basis for the deployment of their own Node. The necessary
application source code, executables and deployment files are provided with this document and are
intended to facilitate the rapid and effective deployment of a working Node in most environments.

This goal of this document is to assist Network partners by reducing the effort, time, and cost associated
with Node implementation.

WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

PAGE 2

Introduction
The National Environmental Information Exchange Network (Network) is an innovative approach for the
exchange of environmental data between EPA, States and other partner organizations. The Network will
promote access to and exchange of quality environmental data while reducing reporting burden and
increasing efficiency of data exchanges. The Network is expected to become the preferred method for
routine inter-governmental transfers of environmental data. The goal of the Network is to apply the
standards and technologies that have transformed information interchange over the Internet to the specific
needs of organizations engaged in environmental protection.

In order to participate in information exchange through the Network, each partner will establish an entry
point or network node (Node). A Node is a simple environmental information Web service that initiates
requests for information, processes authorized queries, and sends and receives the requested information
in a standardized XML format. A Web service is software that exposes an organization’s application
functionality through the Internet using standards-based technologies that can be accessed by other
entities independently of either party’s technical environment.

For additional information concerning the principles and goals behind the Network implementation and
the role of the Nodes in meeting these goals, the reader is directed to the Implementation Plan for the
National Environmental Information Exchange Network Version 1.0 published by the Network Steering
Board.

The State of Washington Department of Ecology (Ecology) engaged Windsor Solutions, Inc (Windsor) to
assist the agency with the analysis, design and construction of a Node. Development of the Node began
in June 2003 and the production Node was implemented in August 2003. The implemented Node has
fully automated the exchange of data between the Ecology Facility Site system and the EPA Facility
Registry System via the EPA Central Data Exchange node (CDX). The Ecology Node is fully compliant
with the following Network requirements:

- Network Exchange Protocol Version 1.1

- Network Node Functional Specification Version 1.1

- Network Security Guidelines and Recommendations

Before beginning development of the Node, Ecology considered a variety of alternative approaches to
Node implementation, including turnkey products and demonstrated node configurations from other
States. These alternatives were considered in light of Ecology’s existing technical infrastructure
investments and future information exchange requirements. Based on this analysis, Ecology chose to
develop a custom Web services Node using the latest Microsoft technologies, specifically the .Net
Framework version 1.1, and Visual Studio .Net 2003. The advanced Web services and XML handling
capabilities of these Microsoft technologies were used to satisfy the Network specification and protocol
requirements.

In addition to the development of the core Node functionality, an initial data flow was also developed to
meet the needs for exchange of regulated facility information between Ecology’s Facility Site system and
the EPA Facility Registry System. Following two months of development and internal testing, the
Ecology Node development team, together with Windsor, worked closely with EPA’s CDX team to
validate the capabilities of the Ecology Node and the CDX Node for management of this data flow. This
joint effort resulted in a working flow of facility data between the two Network partners, and identified
some necessary changes to the Network Node specification and protocol documents that were
incorporated in to the Network Node Functional Specification Version 1.1 and Network Exchange
Protocol Version 1.1.

 WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

 PAGE 3

Ecology is currently actively pursuing the agency’s goal to employ the Network concepts and Node
capabilities to reengineer a number of types of electronic information exchange with other state and local
government, and other private organizations.

Together with the States of Alaska, Idaho, and Oregon, Ecology is undertaking the development of an
information interchange mechanism that seeks to facilitate the aggregation of and access to a
comprehensive source of data related to ambient water quality in the Pacific Northwest. This mechanism
is being developed jointly by the State participants using funds allocated from the EPA Network
Challenge Grant and will be known as the Pacific Northwest Water Quality Data Exchange (Exchange).
The Exchange will embody the Network concepts and will eventually be made available for sharing of
water quality information throughout the Pacific Northwest region. Ecology is presently undertaking the
design and development of the Web services needed to support the Exchange data flow and these are
expected to be used for pilot data transfers early in 2004.

Additionally, Ecology is also engaged in a separate pilot project with the State of Oregon Department of
Environmental Quality (ODEQ) to investigate the feasibility of the exchange of data concerning inter-
state shipments of hazardous waste between regulated RCRA generator and treatment, storage and
disposal facilities (TSDF). For example, with this pilot, the two agencies plan to share waste shipment
information held in their RCRA program systems, such that a given generator’s report of waste shipment
to a TSDF in the other State can be compared directly to the records held in the opposing agency system
for that TSDF.

Document Organization
The purpose of this document is to provide a reference for Network partners to use when establishing
their own nodes, this document provides configuration instructions, recommended hardware and software
requirements, setup and configuration activities, and Node administration techniques.

This document is intended to be used in conjunction with the Network Exchange Protocol Version 1.1,
Network Node Functional Specification Version 1.1, and Network Security Guidelines and
Recommendations documents, which provide the rules, guidelines and detailed description of the Network
Node requirements. Where appropriate, references are made throughout this document to the
specification and guideline documents rather than repeating these sections in this document. All
documents related to the Network initiative can be accessed at the Exchange Network’s site
(http://www.exchangenetwork.net).

The remainder of this document has been organized as follows:

Functional Overview provides a high-level description of the core components of the Ecology
Node implementation.

Technical Architecture describes the physical and logical structure of the Node application itself.

Installation Guide outlines the system requirements and major steps needed to implement the
Node.

Node Administration describes the functionality of the Node administration tool provided with the
Ecology Node.

Node Security describes the security model used by the Ecology Node.

Establishing Data Flows outlines the steps needed to implement a new data flow using the Ecology
Node.

WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

PAGE 4

Functional Overview
The following figure illustrates the fundamental Node components and the interactions between these
components. Each component is further described below.

Figure 1: Node Overview

Requestor
The Web service functionality provided by the Ecology Node may be invoked in a number of ways by a
requestor entity. For example, for the FRS data flow, the partner EPA CDX node issues requests to the
Ecology Node on a regularly scheduled basis to collect updated information about regulated facilities. In
the case of the pilot that Ecology is developing with ODEQ to exchange hazardous waste shipment
information, the ODEQ hazardous waste program application system will issue a request to the Ecology
Node to obtain waste shipment information for a given RCRA generator or TSDF.

Node Interface
The Network Node Functional Specification Document Version 1.1 requires each network node to utilize
a “remote procedure call” or RPC methodology to process incoming requests for information against the
partner’s data sources. The specification calls for each network node interface to include the following
ten standard Web methods:

- Authenticate

- Submit

- GetStatus

- Query

- NodePing

- Solicit

Partner
Node

Node InterfaceRequestor

Client
Application

Node Data

Node Admin

Node Data Sources

Submit

GetStatus

Query

Authenticate

Execute

Notify

Download

Solicit

NodePing

GetServices

Node Engine

Transaction

Service

Fault

Account Client
Application

 WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

 PAGE 5

- Execute (optional)

- Notify

- Download

- GetServices

The function of each of these methods is described in detail in the specification document. Besides
providing operational information about the partner node and ensuring that the appropriate security
controls are applied, these methods serve to accept and pass on incoming requests from a requestor to
either receive or supply information. These requests may be generated from another partner node or from
a custom client application. For example, a requestor may ask a node service for a list of regulated
facilities located in a given county, by invoking the “Query” method and providing the service name and
the required parameters in a predetermined order.

Node Engine
The Node interface will pass on an incoming request to the Node Engine. The Node Engine parses the
incoming request and then invokes the appropriate network service to respond to the request. Using the
previous example, the Facility Registry System service or request processor will be invoked and asked to
execute the “GetFacilitiesByCounty” method. The requested method will then interrogate the appropriate
partner data source, in this case, data from the Ecology Facility Site database.

The flow-specific request processor will then transform the results from the execution of the query into an
XML document using the appropriate schema definition and will return a reference to this document to
the Node Engine. The Node Engine in turn then returns this document to the requestor through the node
interface. The node is characterized as using an RPC methodology because neither the type or number of
parameters passed to the node Query method, nor the values returned are described by that method.
Instead, these values are simply passed on as an array.

New flow processors can be built and implemented in the Node Engine as required, for example, to
support the flow of information to the EPA RCRAInfo national system.

Node Data Sources
When invoked by the Node Engine, the relevant request processor will execute one or more queries
against a source of the relevant data. Rather than execute these queries directly against the agency
program databases, the Ecology Node architecture was designed to include a single specific database for
Node Data. This Node Data source is refreshed regularly with data from the program databases. The
isolation of the true data source from the Node request processing functions also improves efficiency
since the Node Data source is modeled to better support the Node queries than the program data source
itself may have been.

Node Administration Client
The implemented Ecology Node includes a client-based administration tool, the NodeAdmin utility,
which provides the user with remote administration capabilities through an easy to use Windows-based
interface. This client utility allows the user to manage user accounts and the services available to each
user, as well as providing general Node operational support functions.

The functionality of the NodeAdmin utility is discussed in detail in the Node Administration section of
this document.

WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

PAGE 6

Node Testing Client
Alongside the development of the Ecology Node, Windsor has developed a comprehensive testing tool
based on the Network Node Functional Specification Version 1.1, and Network Security Guidelines and
Recommendations documents that will allow a user to interface with any available Network node. This
powerful application is intended to assist Network partners in testing and evaluating Network nodes, by:

- Helping partners to understand the purpose and workings of the Network via a real-world
demonstration,

- Assisting partners in testing the functionality of their Node while it is being developed and/or
deployed, and

- Providing partners with a temporary, semi-automated alternative to a fully functioning Node that
will allow a partner to submit XML files to another partner Node, and/or solicit, query or
download XML data (or other such payloads).

This testing tool, the NodeWinClient utility, is provided for free distribution to Network partners to assist
them in their Node testing. The latest version of the NodeWinClient utility can be downloaded from
http://www.windsorsolutions.biz/nodeclient/.

 WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

 PAGE 7

Technical Architecture
Physical Topology
The following diagrams illustrate two possible physical configurations for the Node.

The typical configuration assumes that the node components and node data source would reside in a
secure DMZ environment, isolated from the outside world and the internal agency environment by
appropriate firewall structures.

Figure 2: Typical Configuration

The Ecology Node, however, adopted a slightly less common configuration owing to the agency’s
established Web server infrastructure. In this case, the Node was configured behind an HTTP Proxy
Server (Fortress) and as such had to accommodate certain specific network requirements.

Figure 3: HTTP Proxy Based Configuration (Ecology-specific)

The Ecology Node was developed to be flexible enough to accommodate other common network
environments. The Node itself has been tested with EPA’s CDX node and shown to support both of the
two physical network architectures illustrated above.

WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

PAGE 8

Logical Architecture
Like most enterprise-level systems, the Node application was designed in logical layers (these layers may,
or may not directly correspond to the physical architecture). This approach improves the Node’s
deployment flexibility and its robustness, and simplifies ongoing maintenance.

Figure 4: Node Logical Layers

Interface Layer
The interface layer includes the Node’s external services and Web methods as defined in the Network
Node Functional Specification Version 1.1 and Network Exchange Protocol Version 1.1. These services
are classified into four major abstract interfaces. In the Ecology Node implementation, these interfaces are
represented by one object (node.asmx) and correspond to the components of the business logic layer.

 WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

 PAGE 9

The reader is directed to the relevant documents for a complete description of each method and interface.

Business Logic Layer
The business logic layer encapsulates all of the business logic required for the operation of the Node
application. The business logic layer is composed of .NET assemblies developed using C#. The
component classes in the business logic layer were developed with an emphasis on code reusability
through the use of Object Oriented Programming.

The fully independent business logic layer components are capable of supporting the Node Web methods
located in the interface layer as well as any other application implementing these components, for
example, the Node Administration application discussed later in this document, which utilizes these same
components to interact with the Node.

The business logic layer components are described in detail in the Object Model discussion later in this
section.

Data Access Layer
The Node data access layer provides all data services to the business logic layer. This layer is
implemented as a single .Net assembly using the Microsoft Data Access Application Block (SQLHelper).

SQLHelper is a .NET component that contains optimized data access code to call stored procedures and
issue SQL text commands against a SQL Server database. It returns SqlDataReader, DataSet, and
XmlReader objects. The Node utilizes SQLHelper as a compiled assembly to reduce the amount of
custom code, decrease testing, and increase maintainability.

The data access layer is responsible for management and processing of all interactions between the
business logic layer and the Node database.

Object Model
The following figure illustrates the component classes included in the business logic layer.

Figure 5: Node BLL Object Diagram

NodeAccount Class
The NodeAccount class represents the Account entity in the Node database and is responsible for all
Node account management. This object interacts with both the Node service as well as the NodeAdmin
utility.

The structure of this class is as follows:

WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

PAGE 10

NodeFault Class
The NodeFault class represents the SOAP Fault as specified by the Network Node Functional
Specification Version 1.1. Its purpose is to provide a consistent and reliable way of communicating all
Node errors back to the requestor.

 WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

 PAGE 11

NodeTransaction Class
The NodeTransaction class represents the Node transaction entity and is responsible for managing all
transaction requests. NodeTransaction also interacts directly with the individual dataflow processing
object through the means of reflection. More detailed information about the processing of data flow
requests as well as the creation of new data flows and their deployment through the Node can be found in
the Establishing Data Flows section of this document.

NodeService Class
The NodeService class represents the node service entity and is responsible for the management of all
service related request. This class is closely coupled with the NodeTransaction class and together these
classes are responsible for processing all queries and solicit requests.

WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

PAGE 12

Data Model
The following figure illustrates the data model used for the underlying database that supports the Node
business logic layer operations discussed in the previous sections.

Figure 6: Node Data Model

 WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

 PAGE 13

Installation Guide
The accompanying zip file contains the setup files needed to install and administer the Node. All source
code is available upon request from Debbie Stewart, tel: (360) 407 7048, e-mail: dste461@ecy.wa.gov.

System Requirements
The Node Web Services application has been design to be hosted from a Microsoft .NET platform. The
following hardware and software configuration is recommended for this platform. In addition, it is
recommended that the reader consult the appropriate product documentation for the most recent
requirements and security configurations.

Server Software

Microsoft Server 2003, Enterprise Edition

The Node application was developed and tested on the enterprise version of 2003 Server. The application
was successfully tested and deployed also in Windows 2000 environment. Please refer to the Microsoft
server documentation for detailed operating system hardware requirements1.

Microsoft Internet Information Server (IIS) 6.0

When deployed in a single machine configuration, the Node application will utilize the IIS installation on
the hosting server. The Node application has also been successfully tested with an IIS 5.0 (Windows 2000
Server) installation.

Microsoft SQL Server 2000 (SP3)

The Node Web Services application, as well as the NodeAdmin utility, were developed against SQL
Server 2000. The database schema and the Node stored procedures are also compatible with SQL 7.0 or
MDAC 2000.

Additional Software

Microsoft .NET Framework 1.1 (v1.1.4322)

The Node application as well as the NodeAdmin utility was developed using the Microsoft .NET
Framework 1.1.

Web Services Enhancements 1.0 (WSE)

To accommodate the Node Direct Internet Message Encapsulation (DIME) and SSL requirements the
Node application was developed using Microsoft Web Services Enhancements, an add-on to the
Microsoft .NET Framework providing the latest advanced Web services capabilities.

1 http://www.microsoft.com/windowsserver2003/evaluation/sysreqs/default.mspx

WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

PAGE 14

Microsoft Data Access Components 2.7 (MDAC)

The Node application uses MDAC to communicate with the underlying Node database. The application
server hosting the Node Engine component must be configured with this MDAC version.

Node Deployment
This section provides guidelines for deployment of the Ecology Node in a technical environment
compatible with the hardware and software specifications outlined above.

The deployment process includes the following tasks:

1. Creation and configuration of Node database

2. Configuration of Node database accounts.

3. Deployment of Node executables.

4. Configuration of Node application.

Creation and configuration of Node database
Requirements:

SQL Server installation meeting minimal previously outlined hardware requirements

SQL Server Administrator rights

NodeUser and NodeAdmin2 SQL Server user accounts associated to the Node database.

Installation Files:

node.sql script

The Node comes with a preconfigured Node database creation script. The node.sql script will create and
configure the Node database in the default location specified by the SQL Server installation.
Alternatively, the Node database can be first created in the desired location and the provided script used
to create only the necessary tables and stored procedures.

The Node utilizes two named accounts to access the database. The NodeUser account is used by the Node
clients accessing the Node data. The NodeAdmin account is used by the NodeAdmin application
described later in this document to manage and administer the Node itself.

The provided script grants the necessary execute rights to the appropriate stored procedures to each of
these users. The users themselves have no rights on the database tables.

For a further description of the Ecology Node security model, see the Node Security section of this
document

2 The NodeUser and NodeAdmin are used for presentation only. The actual user accounts can have different names
but they have to be granted public access to the Node database.

 WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

 PAGE 15

Deployment of Node executables
Requirements:

IIS Server installation meeting minimal previously outlined hardware requirements

Local administrator rights

Installation Files:

node.msi package

The Microsoft Setup and Install (MSI) package will create the necessary directories, configure the IIS
server and copy all necessary application executable files. The reader is directed to the detailed
installation instructions included in the MSI package.

Configuration of Node application
Requirements:

Successfully deployed and tested Node database

IIS Node application folder containing Node executables

Installation Files:

Web.config file (will already exist in the Node application directory)

The .Net Framework provides an alternative to storing application configuration information in the
machine registry. The Web.config file describes all of the parameters required to fully configure the
Node application.

Key Purpose

ConnectionString Connection string to the SQL Server database for the Node application.

RequireSSL True or False flag indicating whether the Node application should be
requiring SSL communication. In some HTTP Proxy configurations the SSL
certificate resides on the proxy and communication between the proxy and
Node server is conducted over the standard HTTP protocol (80).

EnableExecuteMethod True or False flag indicating whether the Node application should be
responding to the Execute method. (Considering the security implications
and the fact that the Node specification 1.1 designates this method as
optional, the default configuration of the Node application has this method
turned off.

MaxRowsReturn Default number of maximum records returned by the Query method. The
solicit method does not utilize this option and returns all data specified by the
individual flows.

TempFolderPath Location of the directory where dataflow objects will be serialized. Make
sure that the final trailing slash is there. Node ASP user used by the .NET
Framework must have Read/Write/Modify rights to this directory.

ExternalURL Fully qualified URL for the Node. Used with the HTTP Proxy as a
workaround for the Node Fault messages. (Proxy Specific)

UseHTTPProxy True or False flag used to turn the HTTP Proxy specific options. Turn this on

WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

PAGE 16

Key Purpose
if the Node Web server resides behind a proxy. (Proxy Specific)

CDXHostIP Because the reversed proxy prevents Node from seeing the actual IP address
of the requestor, you must enter a static IP address to allow the CDX
centralized token authentication to work properly. (Proxy Specific)

CDXAccount Account name for this node at CDX.

CDXCredentials Credential for the above account at CDX

NASUrl URL of the NAAS Authentication WSDL file.

CDXNode URL to the CDX Node.

FlowTitle The Node uses reflection to identify specific flow processors (DLLs). To
allow maximum flexibility, the Node allows for loosely coupled assemblies
to perform the actual data flow specific requests handing. Please see the
Establishing Data Flows section of this document for further information.

The Web.config file also contains a number of system wide configuration parameters. The following
excerpt from the Web.config file illustrates the recommended production Node settings. During
development and testing, the individual settings can be adjusted to allow for more debugging, browser-
based testing and more verbose logging. The reader is directed to the Microsoft .Net Framework
specifications for details on modifications to the Web.config file.

<system.web>
 <webServices>
 <soapExtensionTypes>
 <add
 type="Microsoft.Web.Services.WebServicesExtension,
 Microsoft.Web.Services,
 Version=1.0.0.0,
 Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"
 priority="1"
 group="0"/>
 </soapExtensionTypes>
 <protocols>
 <clear/>
 <add name="HttpSoap"/>
 <add name="Documentation"/>
 </protocols>
 </webServices>
 <compilation defaultLanguage="c#" debug="false"/>
 <customErrors mode="Off"/>
 <authentication mode="Windows"/>
 <authorization>
 <allow users="*"/>
 </authorization>
 <trace enabled="false"

 WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

 PAGE 17

 requestLimit="10"
 pageOutput="false"
 traceMode="SortByTime"
 localOnly="true"/>
 <sessionState mode="Off"/>
 <globalization
 requestEncoding="utf-8"
 responseEncoding="utf-8" />
</system.web>

WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

PAGE 18

Node Administration
The Node Administration utility (NodeAdmin) is a Windows Forms application based on the .NET
Framework. NodeAdmin allows remote administration of the Node application through a series of
windows described in this section.

Requirements
The NodeAdmin utility has been design to allow a more user-friendly approach to managing the Node.
The following hardware and software configuration is recommended for any workstation using the
NodeAdmin utility.

- Windows XP/2000

- Microsoft .NET Framework 1.1 (v1.1.4322)

- Appropriate configuration file with access to the Node database

Manage Node Status
The Node Status window allows the Node Administrator (person) to modify the current status of the
Node.

The dropdown list of predefined status types includes:

Ready the service is up and running

 WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

 PAGE 19

Busy the service is heavily loaded, please call back later

Unavailable the service is currently unavailable

Modifying the status will immediately impact the status of the Node.

Checking the “Process solicit requests immediately” checkbox on will set the Node to process the
solicited queries in background (low priority process) immediately after the request is submitted.
Checking this option off will require the Node Administrator to trigger these requests manually.

Manage Node Accounts
The Node Account window provides a three-pane interface to enable management of Node accounts.

The tree view to left of the window presents a list of accounts currently configured in the Node database.
The account status is indicated by a letter corresponding either to active (A) or inactive (I).

Clicking on an individual account activates its details located in the right-top pane, allowing the Node
administrator to edit the account details and to view the particular services associated with this account.

The right- lower pane contains the list of services which can be associated with each account.

Authentication Method

Currently the Node supports only the password authentication method. Future releases will support other
means of authentication (PKI, Digest, Certificate, SAML etc.).

WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

PAGE 20

Token Expiration

The token expiration menu allows the Node administrator to specify the period after which each token
will expire. Each token is validated prior to processing the user request, thus long running jobs exceeding
the expiration period will continue to be processed.

Manage Node Services
The Node Service administration window includes the core functionality of the NodeAdmin utility. It
allows management of the data flows configured within the Node database.

Note that prior to adding a new service within the NodeAdmin utility, that service has to be developed
and configured as the specific information about that service will be obtained from the service WSDL
file.

The tree on the left side of the screen lists the currently configured services supported by the Node.
Clicking on any of the nodes of this tree will activate the Service detail pane showing the details of the
Service

The Ecology Node currently supports three main types of Web Service:

Query

This type of service utilizes the RPC method. All results of this query are in a string format and
correspond to predefined queries in SQL database. When using a simple stored procedure query, the
parameters of that stored procedure will automatically be queried and saved on the Node database as its
parameters.

 WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

 PAGE 21

Interface

This type of service utilizes the document/literal method. All results of this query are strongly typed and
represent a specific interface (an asmx file) which is described by its own WSDL file.

Execute

Due to potential security issues related to allowing users to execute dynamic SQL commands against the
partner databases this method type has been disabled by default. This method can be enabled by
modifying the AllowExecute parameter in the Node Web.config file.

Manage Node Transactions
The Node Transaction window tracks each transaction (both incoming as well as outgoing). A Node
Transaction represents a specific request submitted through the Node interface.

By selecting the specific transaction from the list at the top of the screen, the Node Administrator can
view and change the status of each transaction.

In addition, the documents associated with this transaction are listed in the Transaction Documents pane
in the bottom right corner.

The transaction detail screen provides a manual triggering mechanism should the Process Solicit Requests
Immediately option be checked off on the Status screen.

WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

PAGE 22

Manage Node Documents
The Node Document window allows the Administrator to track each document. A Node Document
represents a specific document either submitted through the node interface or generated by one of the
Node data flows.

By selecting the specific document from the list at the top of the screen, the Node administrator can view
and change the status of each document.

In addition, the transactions associated with this document are listed in the Transactions section in the
bottom right pane.

The document detail pane provides a download button which when clicked will allow the user to
download the selected document to a specific location.

In addition, using this screen, the Node administrator can associate each document with multiple
transactions (requests), potentially limiting the number of documents needing to be generated for
similar/identical requests.

 WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

 PAGE 23

Node Activity Log
The Node Activity Log window allows the Node Administrator to audit the node activities.

Double clicking any individual event displays its details in a pop-up box.

Note that this log represents only successful requests and their responses. All faults and errors generated
by the Node application are logged in the Node application event log and can be accessed though the
Windows Event Log Utility.

WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

PAGE 24

Node Security
Authentication
The Authenticate Web method authenticates a user using a supplied credential. It returns a security token
when successful. The security token is than included in all other method invocations, except the
NodePing method, as a proof of identity.

A security token is an opaque string that is meaningful only to the issuer or trusted peers. The Node
application associates each issued security token to the UserID for token verification, and to a timestamp
for aging and expiration checking.

The Node implements an aging strategy to prevent replay attack. An expired token is discarded
immediately and any following request providing that token will be rejected. The token life span is
defaulted to ten minutes, but can be modified for each user using the NodeAdmin utility.

Authorization
The Ecology Node provides basic user/service authorization at the account level managed through using
the Account interface in the NodeAdmin tool. The database diagram below shows the structure of the data
used to administer authorization.

Account

AccountID

UserID
Credential
AuthMethod
ExcpirationPeriod
CreatedOn
LastModifiedOn
Active

Service

ServiceID

ServiceName
WSDLLocation
ServiceDescription
ServiceType
CreatedOn
Active

AccountService

AccountID
ServiceID

Audit (Logging)
The Node logs received transactions in a persistent storage (database table) area and provides search
capability using the Node Log interface in the NodeAdmin utility. This functionality allows for tracking
transactions either by date or requestor user identifier. In addition to information about submitted requests
and documents, the log records information pertaining to the major milestones of each user session.

In addition, the Node provides a detailed Input/Output trace log that contains detailed processing steps for
each user.

 WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

 PAGE 25

Establishing Data Flows
This section describes the basic steps required to set up a new data flow processor in the Ecology Node.
As the Network becomes the preferred data exchange mechanism, additional data flows will be made
available through the Node.

Data Flow Integration
To allow maximum flexibility, the Node application allows for loosely-coupled assemblies to perform the
actual specific data flow request processing. To make this possible the Node architecture defines some
basic rules for development of the data flow processing assemblies:

1. There should be only one flow processor per flow. The main assembly (DLL) implementing the
IDataFlowRequestProcessor interface may reference other assemblies but it must do so
independently of the main Node processes.

2. Each flow processing assembly has to implement the IDataFlowRequestProcessor interface. (A
compiled version of the interface has been provided along with this document)

In addition, the Node Web.config files must reference the individual flow request processing assemblies
using the following standard:

Key: The name of the data flow. This must match the name associated with the service.

Value: Comma delimited string containing the following information:

i. Name of the DLL for this request processor without the extension

ii. Fully qualified name of the class implementing the interface

Data Flow Development

1) Develop DTS package(s) to replicate data into the Node database
The data should be transformed from its originating database structure and format to match that of the
new data flow schema. This data replication should occur on a regular frequency via a SQL Server batch
job. This approach simplifies the XML formulation when serving data, and improves the performance of
the Web services. Tables created in the Node Database should be named with a consistent prefix (e.g.,
FRS) to differentiate them from those used to support other data flows.

2) Develop Transact SQL (TSQL)
a) Create a stored procedure
Create a single stored procedure that selects all necessary data to fulfill the dataflow schema.

SELECT * FROM table1 /* parent table */
SELECT * FROM table2 /* first child */
SELECT * FROM table3 /* second child */

b) Apply record filtering using criteria parameters
Use parameters to filter the results. For performance reasons it may be beneficial to perform parameter
filters on a local variable of type table and then use the IN keyword to filter the sub selects.

WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

PAGE 26

DECLARE @t TABLE (rowid int identity, pkId varchar(36))

INSERT INTO @t (pkId)
SELECT PrimaryKeyField
FROM SomeTable
WHERE SomeField = @Variable1 AND OtherField = @ Variable2
ORDER BY PrimaryKeyField

SELECT * FROM table1 WHERE PrimaryKeyField IN (
SELECT pkId FROM @t)
SELECT * FROM table2 WHERE PrimaryKeyField IN (
SELECT pkId FROM @t)
SELECT * FROM table3 WHERE PrimaryKeyField IN (
SELECT pkId FROM @t)

Definition of the appropriate filtering criteria is outside of the scope of this document. The reader is
referred to the SQL Server Transact SQL documentation.

NOTE: Make sure that result set for the above stored procedure has a single field, common across all
tables within the dataset that corresponds to the primary key.

c) Test the Query
Use the SQL Query Analyzer to test the stored procedure to make sure that the correct data is returned.

3) Generate data class
a) Use xsd.exe utility to generate a .Net class
The .Net Framework includes a utility (xsd.exe) which simplifies generation of a class from an XML
Schema which later will be serialized to an XML document. Using this utility guarantees that the
resulting object (when serialized) will conform to the originating schema.

The reader is directed to the following link for details on the use of xsd.exe:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cptools/html/cpconxmlschemadefinitiontoolxsdexe.asp

b) Modify the resulting class
The class generated by the xsd.exe is a generic object which needs to be modified to fit the data flow
project. The main parts which will have to be modified for the purposes of the Node are the namespace
and library references. In addition to the default references the new class should contain the following
references:

using System.Web.Services;
using System.Web.Services.Protocols;
using System.Xml;
using System.Xml.Serialization;
using System.Xml.Schema;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters;
using System.Runtime.Serialization.Formatters.Soap;
namespace Windsor.Web.NodeEngine

 WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

 PAGE 27

4) Expose query methods

a) Implement IDataFlowRequestProcessor
In order for the Node Query and Solicit methods to begin using this new dataflow, the new class has to
implement the IDataFlowRequestProcessor interface. The dataflow processing class should overlay the
ProcessRequest method.

string ProcessRequest(
string connectionString,
string serializationPath,
string methodName,
int rowId,
int maxRows,

string[] parameters);

It is the responsibility of the dataflow processing object to populate the resulting class with data using the
provided connection string and serialize that object to an XML file in the appropriate location.

The use of the rowed and maxRows allows the requestor to page records. See the Network Node
Functional Specification Version 1.1 for specific uses of these parameters.

b) Populate relationship
The PopulateRelationships method should be invoked, passing the dataset developed in the first step by
reference together with the name of the primary key.

PopulateRelationship(ref ds, pkName);

5) Populate object

a) Create an instance of the return object
Create an instance of the object to be returned. The instance then will be populated with the dataset data.

NameOfTheNewClass obj = new NameOfTheNewClass();

b) Populate primitive properties
Load the primitive properties of the object with appropriate data.

Obj.Property1 = Tables[n][i];

c) Enumerate Tables/Rows
Load the multiple instance properties data using the Table/Row enumeration methods

foreach (DataRow dr in Tables[n].Rows) {
SubObject subObj = new SubObject ();
subObj.Property1 = DataSet.Tables[n][i];

Obj.ArrayProperty.Add(subObj);
}

WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

PAGE 28

6) Assign a new service to the Node
Having developed the data class which will be responsible for all data queries in this dataflow, the next
step is to add this class to the Node project to allow for Query and Solicit methods to be able to execute it.

The Query and Transaction classes provide detailed instructions on integrating new data flows in to the
Node.

7) Publish the updated Node
When all the above steps are complete, publish the new service using the NodeAdmin tool by specifying
the new interface’s WSDL file location.

8) Testing
To validate the successful deployment of the Node application, it is recommended that two sets of tests
are performed. An Internal Test to validate the initial deployment and an external test, using the on-line
tool provided by CDX.

Internal Tests
In order to allow for quick self-test using the auto-generated browser interface, the Node Web.config file
can be modified as follows:

<configuration>
 <system.web>
 <webServices>
 <!-- Remove this comment prior to going to production
 <protocols>
 <clear/>
 <add name="HttpSoap"/>
 <add name="Documentation"/>
 </protocols>
 -->
 </webServices>
 </system.web>

</configuration>

Once the Web.config file is modified, a browser interface can be used to test each individual interface.

An alternative approach to testing the Node deployment is to use the NodeWinClient utility developed by
Windsor and freely available for download at http://www.windsorsolutions.biz/nodeclient/.

External Tests
The EPA CDX on-line test application provides the ability to test any Node in the Network, by triggering
Network WSDL-compliant requests on that Node. If a Node passes a test with this tool, if is very likely, if
not guaranteed, that the Node will be interoperable with other Network WSDL-compliant Nodes. This
tool, which is intended to verify general compliance with the Network Node Functional Specification
Version 1.1, focuses on interoperability among Nodes.

The EPA Node Test Site can be accessed at https //test.epacdxnode.net/test/.

 WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

 PAGE 29

Glossary
Term Definition

.NET Framework The .NET Framework is a component of the Windows operating system that
provides the programming model for building, deploying and running Web-
based applications, smart client applications and Web services. The .NET
Framework consists of the common language runtime (CLR) and a unified
class library.

ADO.NET The suite of data access technologies included in the .NET Framework class
libraries

ASP.NET The development component for building server-based Web applications. An
evolution of ASP into the .NET Framework.

assembly The primary building block—also the unit of deployment and versioning—of
a .NET Framework application. An assembly includes an assembly manifest,
which describes the contents of the assembly

C# A new ECMA-approved programming language designed for the .NET
Framework. C#, which is an evolution of C and C++, is type safe and object
oriented. Because it is compiled as managed code, it benefits from the
services of the common language runtime, such as language interoperability,
enhanced security, and garbage collection.

class library, .NET
Framework

A library of classes, interfaces, and value types that are included in the
Microsoft .NET Framework and can be used from any CLS-compliant
language. The .NET Framework class library provides access to system
functionality and is designed to be the foundation on which .NET
Framework applications, components, and controls are built.

common language runtime
(CLR)

The engine at the core of .NET Framework-managed code execution. The
runtime supplies managed code with services such as cross-language
integration, code access security, object lifetime management, and debugging
and profiling support.

Extensible Markup
Language (XML)

A subset of Standard Generalized Markup Language (SGML) that is
optimized for delivery over the Web. XML provides a uniform method for
describing and exchanging structured data that is independent of applications
or vendors.

garbage collection (GC) The process of transitively tracing through all pointers to actively used
objects to locate all objects that can be referenced and then arranging to reuse
any heap memory that was not found during this trace. The CLR garbage
collector also compacts the memory that is in use to reduce the working
space needed for the heap.

HTTP Hyper Text Transfer Protocol is a standard Internet protocol for transfer of
information between servers and between clients and servers.

loosely coupled architecture A distributed application in which you can change the implementation of one
tier without affecting any of the other tiers. Contrast tightly coupled

WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

PAGE 30

Term Definition
architecture.

managed code Managed code supplies the metadata necessary for the CLR to provide
services, such as memory management, cross-language integration, code
access security, and automatic lifetime control of objects. All code based on
MSIL executes as managed code.

metadata Data (or information) about data. Many different systems use metadata—for
example, type libraries in COM provide metadata and databases have
schemas. In the CLR, metadata is used to describe assemblies and types. It is
stored with them in the executable files, and is used by compilers, tools, and
the runtime to provide a wide range of services. Metadata is essential for
runtime type information and dynamic method invocation.

native code Code that has been compiled to processor-specific machine code.

n-tier System architecture that separates presentation, business logic, data access,
and database (or other persistence mechanism) tiers.

reflection .NET Framework technology that allows you to examine metadata that
describes types and their members. Reflection can be used to create, invoke,
and access type instances at run time.

serviced component The mechanism that enables COM+ services to be available to .NET
Framework classes.

side-by-side execution The ability to run multiple versions of the same assembly simultaneously.
This can be on the same computer or in the same process or application
domain. Allowing assemblies to run side-by-side is essential to support
robust versioning in the common language runtime. Side-by-side is also used
to describe to describe two versions of the .NET Framework running
simultaneously on the same computer.

SOAP Simple Object Access Protocol, a W3C standard. A lightweight protocol for
exchange of information in a decentralized, distributed environment. It is an
XML-based protocol for exchanging structured and type information on the
Web. The SOAP protocol contains no application or transport semantics,
which makes it highly modular and extensible.

tightly coupled architecture A distributed application where a change to any tier affects some or all the
other remaining tiers. Contrast loosely coupled architecture.

UDDI Universal Description, Discovery, and Integration (UDDI) specification. An
initiative that creates a global, platform-independent, open framework to
enable Web service providers to advertise the existence of their Web services
and for Web service consumers to locate Web services of interest.

Web services A programming model that provides the ability to exchange messages in a
scalable, loosely coupled, and platform-neutral environment using standard
protocols such as HTTP, XML, XSD, SOAP, and WSDL. The SOAP-based
XML messages exchanged between a Web service and its clients can be
structured and typed, or loosely defined. The flexibility of using a text format
such as XML enables the message exchange to evolve over time in a loosely

 WASHINGTON DEMONSTRATED NETWORK NODE CONFIGURATION

 PAGE 31

Term Definition
coupled way. Because they are based on standard protocols and are platform
neutral, Web services enable communication with a broad variety of
implementations, platforms, and devices.

Web Services Description
Language (WSDL)

An XML-based contract language for describing network services offered by
a server.

Windows Forms A rich Windows client library that encapsulates native Win32 APIs and
exposes secure, managed classes for creating smart Windows client
applications. The Windows Forms class library provides many controls, such
as buttons, check boxes, drop-down lists, combo boxes, data grid, and others,
that encapsulate user-interface and other client-side functionality.

WSDL (see Web Services Description Language)

XML (see Extensible Markup Language).

XML Schema Definition
(XSD)

A W3C Recommendation that specifies how to formally describe the
elements of an XML document. The schema can be used to verify the
conformance of elements in an XML document.

